Java - 类型为String的方法get(Class)未定义

时间:2017-03-11 14:17:13

标签: java stanford-nlp

运行我的代码时收到以下错误:

The method get(Class) is undefined for the type String.

我理解为什么我会遇到这个问题,因为get()方法不能在String上运行。但是,我希望有人可以告诉我如何解决这个问题?非常感谢所有建议。我遇到问题的代码部分是:

public static void averageSent(String review) 
  { 
        //populate sentence array with each sentence of the review
        String [] sentences = review.split("[!?.]+");

        //number of sentences in each review
        int review_sentences = review.split("[!?.]+").length;

        //array of sentiments for each review
        String sentiments[] = new String[review_sentences];

        //initialise total
        int total = 0;

        //populate sentiments array
        for (int i=0; i< review_sentences; i++)
            {
                **sentiments[i]=sentences[i].get(SentimentCoreAnnotations.SentimentClass.class).toString();**
            }

        //output sentiments array
        for (int i =0; i < sentiments.length; i++)
        {
            System.out.println("SENTIMENTS" +sentiments[i]);
        }

        //total up a score for the array
        for (String s: sentiments)
        {
            ...
        }
    }

整个代码是:

import java.io.*;
import java.util.*;

import edu.stanford.nlp.coref.CorefCoreAnnotations;

import edu.stanford.nlp.coref.data.CorefChain;
import edu.stanford.nlp.io.*;
import edu.stanford.nlp.io.EncodingPrintWriter.out;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.pipeline.CoreNLPProtos.Sentiment;
import edu.stanford.nlp.semgraph.SemanticGraph;
import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;
import edu.stanford.nlp.sentiment.Evaluate;
import org.apache.commons.io.FileUtils;

/** This class demonstrates building and using a Stanford CoreNLP pipeline. */
public class sentimentMain {

  /** Usage: java -cp "*" StanfordCoreNlpDemo [inputFile [outputTextFile [outputXmlFile]]] */
  public static void main(String[] args) throws IOException {

      //ArrayList<String> Sentences = new ArrayList<String>();
      //ArrayList<String> sentence_sentiment = new ArrayList<String>();

    // set up optional output files
    PrintWriter out;
    if (args.length > 1) {
      out = new PrintWriter(args[1]);
    } else {
      out = new PrintWriter(System.out);
    }
    PrintWriter xmlOut = null;
    if (args.length > 2) {
      xmlOut = new PrintWriter(args[2]);
    }
    // Add in sentiment
    Properties props = new Properties();
    props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref, sentiment");

    StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
    File[] files = new File("C:/stanford-corenlp-full-2016-10-31/dataset").listFiles();

    String line = null;

    try{
        for (File file : files) {
            if (file.exists()) {
                BufferedReader in = new BufferedReader(new FileReader(file));
                String str = FileUtils.readFileToString(file);
                while((line = in.readLine()) != null)
                {
                    Annotation document = new Annotation(line);

                    // run all the selected Annotators on this text
                    pipeline.annotate(document);

                    // this prints out the results of sentence analysis to file(s) in good formats
                    pipeline.prettyPrint(document, out);
                    if (xmlOut != null) {
                      pipeline.xmlPrint(document, xmlOut);
                    }

                    List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.class);
                    if (sentences != null && ! sentences.isEmpty()) {
                      CoreMap sentence = sentences.get(0);
                      for (CoreMap token : sentence.get(CoreAnnotations.TokensAnnotation.class)) {
                      }
                      Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
                      tree.pennPrint(out);
                      SemanticGraph graph = sentence.get(SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation.class);   
                      Map<Integer, CorefChain> corefChains =
                          document.get(CorefCoreAnnotations.CorefChainAnnotation.class);
                      if (corefChains == null) { return; }
                      for (Map.Entry<Integer,CorefChain> entry: corefChains.entrySet()) {
                        for (CorefChain.CorefMention m : entry.getValue().getMentionsInTextualOrder()) {
                          // We need to subtract one since the indices count from 1 but the Lists start from 0
                          List<CoreLabel> tokens = sentences.get(m.sentNum - 1).get(CoreAnnotations.TokensAnnotation.class);
                        }
                      }
                      out.println("The first sentence overall sentiment rating is " + sentence.get(SentimentCoreAnnotations.SentimentClass.class));

                    }
                    }

                      //Sentences.forEach(s -> System.out.println(s));
                      //sentence_sentiment.forEach(s -> System.out.println(s));
                      averageSent(str); 
                in.close();
            } else {
                System.out.println("File: " + file.getName() + file.toString());
            }
        }
    }catch(NullPointerException e){
        e.printStackTrace();
    }
    IOUtils.closeIgnoringExceptions(out);
    IOUtils.closeIgnoringExceptions(xmlOut);
  }

  public static void averageSent(String review) 
  { 
        //populate sentence array with each sentence of the review
        String [] sentences = review.split("[!?.]+");

        //number of sentences in each review
        int review_sentences = review.split("[!?.]+").length;

        //array of sentiments for each review
        String sentiments[] = new String[review_sentences];

        //initialise total
        int total = 0;

        //populate sentiments array
        for (int i=0; i< review_sentences; i++)
            {
                sentiments[i]=sentences[i].get(SentimentCoreAnnotations.SentimentClass.class).toString();
            }

        //output sentiments array
        for (int i =0; i < sentiments.length; i++)
        {
            System.out.println("SENTIMENTS" +sentiments[i]);
        }

        //total up a score for the array
        for (String s: sentiments)
        {

            if (s.equals("Very positive"))
            {
                int veryPos = 4;
                total += veryPos;
            }
            else if (s.equals("Positive"))
            {
                int pos = 3;
                total += pos;
            }
            else if (s.equals("Negative"))
            {
                int neg = 2;
                total += neg;
            }
            else if (s.equals("Very negative"))
            {
                int veryNeg = 1;
                total += veryNeg;
            }
            else if (s.equals("Neutral"))
            {
                int neu = 0;
                total += neu;
            }

            //System.out.println("Total " +total);
    }

  }


}

使用的主要代码是Stanford CoreNLP情绪分析模型。然而,由于这个模型只能给我电影评论中个别句子的情绪,我设计了这种方法,这样我就可以得到整个评论的平均情绪。 get()方法返回句子的情绪。如果对象来自CoreMap,它可以工作,但我需要它来获取字符串的情绪,这样它就可以为每个电影评论填充多个情绪的字符串数组。

1 个答案:

答案 0 :(得分:0)

以下是一些示例代码,用于了解每种情绪的情绪并计算“正面”,“否定”和“中立”句子。

package edu.stanford.nlp.examples;

import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.sentiment.*;
import edu.stanford.nlp.util.*;
import java.util.Properties;

public class AverageDocumentSentiment {

  public static void main(String[] args) {
    Annotation document =
        new Annotation("...movie review text...");
    Properties props = new Properties();
    props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,parse,sentiment");
    props.setProperty("parse.binaryTrees","true");
    StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
    pipeline.annotate(document);
    int totalNegative = 0;
    int totalPositive = 0;
    int totalNeutral = 0;
    int total = 0;
    for (CoreMap sentence : document.get(CoreAnnotations.SentencesAnnotation.class)) {
      String sentenceSentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
      System.out.println(sentenceSentiment);
      if (sentenceSentiment.equals("Negative")) {
        totalNegative++;
      } else if (sentenceSentiment.equals("Positive")) {
        totalPositive++;
      } else {
        totalNeutral++;
      }
      total++ ;
    }
  }
}