我正试图让OpenCV在图像中检测到一张床。我正在运行通常的灰度,模糊,Canny,我尝试过Convex Hull。然而,由于存在相当多的“噪音”,这会产生额外的轮廓并且会弄乱物体检测。因此,我无法正确检测到床。
这是输入图像以及Canny边缘检测结果:
正如你所看到的,它几乎就在那里。我已经有了床的轮廓,虽然右上角有一个间隙 - 这使我无法检测到一个封闭的矩形。
这是我正在运行的代码:
import cv2
import numpy as np
def contoursConvexHull(contours):
print("contours length = ", len(contours))
print("contours length of first item = ", len(contours[1]))
pts = []
for i in range(0, len(contours)):
for j in range(0, len(contours[i])):
pts.append(contours[i][j])
pts = np.array(pts)
result = cv2.convexHull(pts)
print(len(result))
return result
def auto_canny(image, sigma = 0.35):
# compute the mediam of the single channel pixel intensities
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) *v))
edged = cv2.Canny(image, lower, upper)
# return edged image
return edged
# Get our image in color mode (1)
src = cv2.imread("bed_cv.jpg", 1)
# Convert the color from BGR to Gray
srcGray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# Use Gaussian Blur
srcBlur = cv2.GaussianBlur(srcGray, (3, 3), 0)
# ret is the returned value, otsu is an image
##ret, otsu = cv2.threshold(srcBlur, 0, 255,
## cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Use canny
##srcCanny = cv2.Canny(srcBlur, ret, ret*2, 3)
srcCanny1 = auto_canny(srcBlur, 0.70)
# im is the output image
# contours is the contour list
# I forgot what hierarchy was
im, contours, hierarchy = cv2.findContours(srcCanny1,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
##cv2.drawContours(src, contours, -1, (0, 255, 0), 3)
ConvexHullPoints = contoursConvexHull(contours)
##cv2.polylines(src, [ConvexHullPoints], True, (0, 0, 255), 3)
cv2.imshow("Source", src)
cv2.imshow("Canny1", srcCanny1)
cv2.waitKey(0)
由于床的轮廓没有关闭,我不能适合矩形,也不能检测最大面积的轮廓。
我能想到的解决方案是使用轮廓点推断最大可能的矩形,以期弥合这个小间隙,但由于矩形不完整,我不太清楚如何继续。
答案 0 :(得分:6)
由于您还没有提供任何其他示例,我提供了一个处理此案例的算法。但请记住,您必须找到适应它的方法,然而其他样品的光线和背景会发生变化。
由于存在大量噪音和相对较高的动态范围,我建议不要使用Canny而是使用自适应阈值处理和查找轮廓(它不需要边缘作为输入),这有助于为图像的不同部分选择不同的阈值。
我的结果:
代码:
import cv2
import numpy as np
def clahe(img, clip_limit=2.0, grid_size=(8,8)):
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=grid_size)
return clahe.apply(img)
src = cv2.imread("bed.png")
# HSV thresholding to get rid of as much background as possible
hsv = cv2.cvtColor(src.copy(), cv2.COLOR_BGR2HSV)
lower_blue = np.array([0, 0, 120])
upper_blue = np.array([180, 38, 255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
result = cv2.bitwise_and(src, src, mask=mask)
b, g, r = cv2.split(result)
g = clahe(g, 5, (3, 3))
# Adaptive Thresholding to isolate the bed
img_blur = cv2.blur(g, (9, 9))
img_th = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 51, 2)
im, contours, hierarchy = cv2.findContours(img_th,
cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_SIMPLE)
# Filter the rectangle by choosing only the big ones
# and choose the brightest rectangle as the bed
max_brightness = 0
canvas = src.copy()
for cnt in contours:
rect = cv2.boundingRect(cnt)
x, y, w, h = rect
if w*h > 40000:
mask = np.zeros(src.shape, np.uint8)
mask[y:y+h, x:x+w] = src[y:y+h, x:x+w]
brightness = np.sum(mask)
if brightness > max_brightness:
brightest_rectangle = rect
max_brightness = brightness
cv2.imshow("mask", mask)
cv2.waitKey(0)
x, y, w, h = brightest_rectangle
cv2.rectangle(canvas, (x, y), (x+w, y+h), (0, 255, 0), 1)
cv2.imshow("canvas", canvas)
cv2.imwrite("result.jpg", canvas)
cv2.waitKey(0)