我正在写一个火花工作,以获取按学生日期过滤的最新学生记录。但是当我用十万条记录尝试这个时,它工作得很好。但是当我用大量记录运行它时,我的sparkjob会返回错误。
我猜这个错误发生了,因为我从表中加载了所有数据并将int放在RDD中。因为我的表包含大约420万条记录。如果是这样,有没有更好的方法来有效地加载这些数据并成功继续我的操作?
请有人帮我解决此问题
WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 1, 10.10.10.10): java.lang.OutOfMemoryError: GC overhead limit exceeded
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2157)
at com.mysql.jdbc.MysqlIO.nextRow(MysqlIO.java:1964)
at com.mysql.jdbc.MysqlIO.readSingleRowSet(MysqlIO.java:3316)
at com.mysql.jdbc.MysqlIO.getResultSet(MysqlIO.java:463)
at com.mysql.jdbc.MysqlIO.readResultsForQueryOrUpdate(MysqlIO.java:3040)
at com.mysql.jdbc.MysqlIO.readAllResults(MysqlIO.java:2288)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2681)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2551)
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1861)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:1962)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$$anon$1.<init>(JDBCRDD.scala:408)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:379)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
17/03/09 10:54:09 INFO TaskSetManager: Starting task 0.1 in stage 1.0 (TID 2, 10.10.10.10, partition 0, PROCESS_LOCAL, 5288 bytes)
17/03/09 10:54:09 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 2 on executor id: 1 hostname: 10.10.10.10.
17/03/09 10:54:09 WARN TransportChannelHandler: Exception in connection from /10.10.10.10:48464
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel. java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNio ByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoo p.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:38 2)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEvent Executor.java:111)
at java.lang.Thread.run(Thread.java:745)
17/03/09 10:54:09 ERROR TaskSchedulerImpl: Lost executor 1 on 10.10.10.10: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
17/03/09 10:54:09 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20170309105209-0032/1 is now EXITED (Command exited with code 52)
代码
object StudentDataPerformanceEnhancerImpl extends studentDataPerformanceEnhancer {
val LOG = LoggerFactory.getLogger(this.getClass.getName)
val USER_PRIMARY_KEY = "user_id";
val COURSE_PRIMARY_KEY = "course_id";
override def extractData(sparkContext: SparkContext, sparkSession: SparkSession, jobConfiguration: JobConfiguration): Unit = {
val context = sparkSession.read.format("jdbc")
.option("driver", "com.mysql.jdbc.Driver")
.option("url", jobConfiguration.jdbcURL)
.option("dbtable", "student_student")
.option("user", test_user)
.option("password", test_password)
.load()
context.cache()
val mainRDD = context.rdd.map(k => ((k.getLong(k.fieldIndex(USER_PRIMARY_KEY)),
k.getLong(k.fieldIndex(COURSE_PRIMARY_KEY)),
k.getTimestamp(k.fieldIndex("student_date_time"))),
(k.getLong(k.fieldIndex(USER_PRIMARY_KEY)),
k.getLong(k.fieldIndex(COURSE_PRIMARY_KEY)),
k.getTimestamp(k.fieldIndex("student_date_time")),
k.getString(k.fieldIndex("student_student_index")),
k.getLong(k.fieldIndex("student_category_pk")),
k.getString(k.fieldIndex("effeciency")),
k.getString(k.fieldIndex("net_score")),
k.getString(k.fieldIndex("avg_score")),
k.getString(k.fieldIndex("test_score"))))).persist(StorageLevel.DISK_ONLY)
LOG.info("Data extractions started....!")
try {
val studentCompositeRDD = context.rdd.map(r => ((r.getLong(r.fieldIndex(USER_PRIMARY_KEY)),
r.getLong(r.fieldIndex(COURSE_PRIMARY_KEY))),
r.getTimestamp(r.fieldIndex("student_date_time")))).reduceByKey((t1, t2) => if (t1.after(t2)) t1 else t2)
.map(t => ((t._1._1, t._1._2, t._2), t._2)).persist(StorageLevel.DISK_ONLY)
val filteredRDD = mainRDD.join(studentCompositeRDD).map(k => k._2._1)
DataWriter.persistLatestData(filteredRDD)
} catch {
case e: Exception => LOG.error("Error in spark job: " + e.getMessage)
}
}
}
与数据库持久性相关的我的DataWriter类位于
之下object DataWriter {
def persistLatestStudentRiskData(rDD: RDD[(Long, Long, Timestamp, String, Long, String, String, String, String)]): Unit = {
var jdbcConnection: java.sql.Connection = null
try {
jdbcConnection = DatabaseUtil.getConnection
if (jdbcConnection != null) {
val statement = "{call insert_latest_student_risk (?,?,?,?,?,?,?,?,?)}"
val callableStatement = jdbcConnection.prepareCall(statement)
rDD.collect().foreach(x => sendLatestStudentRiskData(callableStatement, x))
}
} catch {
case e: SQLException => LOG.error("Error in executing insert_latest_student_risk stored procedure : " + e.getMessage)
case e: RuntimeException => LOG.error("Error in the latest student persistence: " + e.getMessage)
case e: Exception => LOG.error("Error in the latest student persistence: " + e.getMessage)
} finally {
if (jdbcConnection != null) {
try {
jdbcConnection.close()
} catch {
case e: SQLException => LOG.error("Error in jdbc connection close : " + e.getMessage)
case e: Exception => LOG.error("Error in executing insert_latest_student_risk stored procedure : " + e.getMessage)
}
}
}
}
def sendLatestStudentRiskData(callableStatement: java.sql.CallableStatement,
latestStudentData: (Long, Long, Timestamp, String, Long,
String, String, String, String)): Unit = {
try {
callableStatement.setLong(1, latestStudentData._1)
callableStatement.setLong(2, latestStudentData._2)
callableStatement.setTimestamp(3, latestStudentData._3)
callableStatement.setString(4, latestStudentData._4)
callableStatement.setLong(5, latestStudentData._5)
callableStatement.setString(6, latestStudentData._6)
callableStatement.setString(7, latestStudentData._7)
callableStatement.setString(8, latestStudentData._8)
callableStatement.setString(9, latestStudentData._9)
callableStatement.executeUpdate
} catch {
case e: SQLException => LOG.error("Error in executing insert_latest_student_risk stored procedure : " + e.getMessage)
}
}
}
答案 0 :(得分:0)
问题不在于您将数据放入RDD,而是您要将数据从RDD中取出并放到驱动程序内存中。具体来说,问题是您用来保存数据的collect
调用。你应该删除它。 collect
将整个RDD带入驱动程序的内存中,您不再使用spark和集群来处理数据,因此除非数据量非常小,否则会快速耗尽内存。 collect
应该很少被spark过程使用,它对于使用少量数据进行开发和调试非常有用。它在生产应用程序中用于某些支持操作,但不作为主数据流。
如果您使用spark-sql,可以直接写入jdbc,利用它并删除要收集的调用。