我试图训练一个神经网络用于实值输出,我只是给出一组净插值点(看起来像方波振荡)但是反向传播总是不能给我一个好处适合输入,我试图添加更多的输入值更高的功能,并将输出标准化,但它似乎没有帮助。网络是3层1输入1隐藏1输出和一个输出节点 我该如何解决这个问题? 我也用这个成本函数是否正确?
for k = 1:m
C= C+(y(k)-a2(k))^2;
end
我的代码:
clc;
clear all;
close all;
input_layer_size = 4;
hidden_layer_size = 60;
num_labels = 1;
load('Xs');
load('Y-s');
theta1=randInitializeWeights(4, 60);
theta2=randInitializeWeights(60, 1);
plot (xq,vq)
hold on
xq=polyFeatures(xq,4);
param=[theta1(:) ;theta2(:)];
[J ,Grad]= nnCostFunction(param,input_layer_size ,hidden_layer_size,num_labels,xq,vq,0);
options = optimset('MaxIter', 50);
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, xq, vq, 10);
[nn_params, cost] = fmincg(costFunction, param, options);
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
l=xq(:,1);
out =predictTest(Theta1,Theta2,xq);
accuracy=mean(double(out == vq)) * 100
plot (l,out,'yellow');
hold off
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
y(841:901)=0;
y=y/2.2;
Theta1 = reshape( (nn_params(1:hidden_layer_size * (input_layer_size+1 ))), ...
hidden_layer_size, (input_layer_size +1 ));
Theta2 = reshape(nn_params((1+(hidden_layer_size * (input_layer_size +1))):end), ...
num_labels, (hidden_layer_size +1 ));
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
X= [ones(m,1) X];
z1=X*Theta1';
a1 = sigmoid(z1);
a1= [ones(size(a1,1),1) a1];
z2=a1*Theta2';
a2= sigmoid(z2);
for k = 1:m
J= J+(y(k)-a2(k))^2;
end
J= J/m;
Theta1(:,1)=zeros(1,size(Theta1,1));
Theta2(:,1)=zeros(1,size(Theta2,1));
s1=sum (sum (Theta1.^2));
s2=sum (sum (Theta2.^2));
s3= lambda *(s2 +s1 );
s3=s3/(2*m);
J=J+s3;
D2=zeros(size(Theta2));
D1=zeros(size(Theta1));
for i= 1:m
delta3=a2(i)-y(i);
v=[0 sigmoidGradient(z1(i,:))];
delta2=(Theta2'*delta3').*v';
D2=D2+delta3'*a1(i,:) ;
D1=D1+delta2(2:end)*X(i,:);
end
Theta1_grad = D1./m + (lambda/m)*[zeros(size(Theta1,1), 1) Theta1(:, 2:end)];
Theta2_grad = D2./m + (lambda/m)*[zeros(size(Theta2,1), 1) Theta2(:, 2:end)];
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
function W = randInitializeWeights(L_in, L_out)
epsilon_init = 0.5;
W = rand(L_out, 1 + L_in)*2*epsilon_init - epsilon_init;
end
输入是1:9内插0.01增量,目标是0:2.2之间的数字,如方波脉冲
答案 0 :(得分:0)
请注意,红线永远不会为零(最低约0.4 ),这表示训练有素的权重永远不会将网络输出归零(我的意思是权重需要为足够负,并且某些细胞中的偏差完全缺失或不是负的)