我目前正致力于为CNN构建我的输入和输出,其中输入是不同大小的图像,而不同大小的图像是不同大小的矢量。
示例:
Name: mfaa-b-an165
Output: (278, 13)
Input: (276, 846, 3)
-->
Name: mdms2-b-an405
Output: (538, 13)
Input: (276, 1491, 3)
-->
以下是数据当前存储方式的一些形式。我必须为每个不同的特征创建13个不同的CNN,其中每个CNN从特征向量中提取单独的特征。问题是输出数量与输入相比没有那么大的一致性。 唯一的常数是行数和颜色维度,以及以某种方式必须链接的列数从该图像中提取的特征数量。
我的想法是调整图像的x轴大小,以适应提取的特征数量,但有时这是不可能的..
EG。
First example (mfaa-b-an165):
278*3 = 834 => meaning removing 12 columns can provide me 3 output for the pooling layer.
second exmaple (mdms2-b-an405):
538*3 = 1614 => Image should be larger => data should be added not possible.
这显然似乎不起作用..还有其他方法可以使这项工作吗?..