如果df1看起来像:
Build_ID, Request_ID, Group_ID, Average
185, 100, G1, 200
186, 100, G1, 201
185, 102, G1, 203
186, 102, G1, 205
185, 200, G3, 200
186, 200, G3, 201
185, 202, G3, 203
186, 202, G3, 205
和df2看起来像:
Build_ID, Group_ID, Group_Average
185, G1, 300
186, G1, 301
185, G3, 401
186, G3, 402
最终结果如下:
Build_ID, Request_ID, Group_ID, Average, Group_Average
185, 100, G1, 200, 300
186, 100, G1, 201, 301
185, 102, G1, 203, 300
186, 102, G1, 205, 301
185, 200, G3, 200, 401
186, 200, G3, 201, 402
185, 202, G3, 203, 401
186, 202, G3, 205, 402
对于每个Group_ID和Build_ID,基本上包含来自df1的所有行和来自df2的Group_Average。 我尝试使用不同的关节进行合并和连接,但无法获得我正在寻找的结果。感谢
答案 0 :(得分:0)
这就是你想要的吗?
In [60]: df1.merge(df2, on=['Build_ID','Group_ID'])
Out[60]:
Build_ID Request_ID Group_ID Average Group_Average
0 185 100 G1 200 300
1 185 102 G1 203 300
2 186 100 G1 201 301
3 186 102 G1 205 301
4 185 200 G3 200 401
5 185 202 G3 203 401
6 186 200 G3 201 402
7 186 202 G3 205 402