我的日志文件包含每行中的一些信息,如下所示
Info1:NewOrder|key:123 |Info3:10|Info5:abc
Info3:10|Info1:OldOrder| key:456| Info6:xyz
Info1:NewOrder|key:007
我想将其更改为如下所示的csv(如果我将密钥,Info1,Info3更改为必需的标题)
key,Info1.Info3
123,NewOrder,10
456,OldOrder,10
007,NewOrder,
之前我使用awk获取字段值,但是日志记录可以更改连续打印的信息和密钥的顺序。所以我不能确定Info3总是会出现在某个特定列中。每次记录更改时,都需要更改脚本。
我打算在pandas dataframe中加载csv。所以python解决方案会更好。这更像是从日志文件生成csv的数据清理任务。
这是我在阅读答案后使用的内容
import csv
import sys
with open(sys.argv[1], 'r') as myLogfile:
log=myLogfile.read().replace('\n', '')
requested_columns = ["OrderID", "TimeStamp", "ErrorCode"]
def wrangle(string, requested_columns):
data = [dict([element.strip().split(":") for element in row.split("|")]) for row in string.split("\n")]
body = [[row.get(column) for column in requested_columns] for row in data]
return [requested_columns] + body
outpath = sys.argv[2]
open(outpath, "w", newline = "") with open(outpath, 'wb')
writer = csv.writer(file)
writer.writerows(wrangle(log, requested_columns))
示例logfile = https://ideone.com/cny805
答案 0 :(得分:0)
它的大部分内容只是使用有用的字符串方法,如strip和split,以及列表推导。
import csv
string = """Info1=NewOrder|key=123 |Info3=10|Info5=abc
Info3=10|Info1=OldOrder| key=456| Info6=xyz
Info1=NewOrder|key=007"""
requested_columns = ["key", "Info1", "Info3"]
def wrangle(string, requested_columns):
data = [dict([element.strip().split("=") for element in row.split("|")]) for row in string.split("\n")]
body = [[row.get(column) for column in requested_columns] for row in data]
return [requested_columns] + body
outpath = "whatever.csv"
with open(outpath, "w", newline = "") as file:
writer = csv.writer(file)
writer.writerows(wrangle(string, requested_columns))
答案 1 :(得分:0)
您可以使用带有|
分隔符的csv阅读器来帮助您入门,然后使用:
进行拆分,为您提供每行字典,如下所示:
import csv
with open('input.csv', 'rb') as f_input, open('output.csv', 'wb') as f_output:
csv_output = csv.writer(f_output)
cols = ["OrderID", "TimeStamp", "ErrorCode"]
csv_output.writerow(cols)
for row in csv.reader(f_input, delimiter='|'):
# Remove any entries that do not have a colon
row = [c for c in row if c.find(':') != -1]
# Convert remaining columns into a dictionary
entries = {c.split(':')[0].strip() : c.split(':')[1].strip() for c in row}
csv_output.writerow([entries.get(c, "") for c in cols])
给你一个输出文件:
OrderID,TimeStamp,ErrorCode
3000000,1488948188555841641,
3000000,1488948188556444675,0
直接将数据读入Pandas数据帧:
import pandas as pd
import csv
cols = ["OrderID", "TimeStamp", "ErrorCode"]
data = []
with open('input.csv', 'rb') as f_input:
csv_output = csv.writer(f_output)
for row in csv.reader(f_input, delimiter='|'):
# Remove any entries that do not have a colon
row = [c for c in row if c.find(':') != -1]
# Convert remaining columns into a dictionary
entries = {c.split(':')[0].strip() : c.split(':')[1].strip() for c in row}
data.append([entries.get(c, "") for c in cols])
df = pd.DataFrame(data, columns=cols)
print df
给你:
OrderID TimeStamp ErrorCode
0 3000000 1488948188555841641
1 3000000 1488948188556444675 0