我试图将GUI(tkinter)添加到我的脚本中,但无济于事。如果有人能帮助我,我会非常感激。我使用的是Python 3.6,我认为最新的opencv?
我2周前才开始编程。所以,有点新的一切。基本上,我想创建一个窗口,只从我的文件夹中选择图像,然后通过脚本处理它,这样每当我想使用另一个图像时,我都不必更改脚本。我希望有意义..
这是我从youtube上从Chris Dahms那里获取的脚本,并设法将其更改为我想要的内容。
import cv2
import numpy as np
import os
import DetectChars
import DetectPlates
import PossiblePlate
SCALAR_BLACK = (0.0, 0.0, 0.0)
SCALAR_WHITE = (255.0, 255.0, 255.0)
SCALAR_YELLOW = (0.0, 255.0, 255.0)
SCALAR_GREEN = (0.0, 255.0, 0.0)
SCALAR_CYAN = (255.0, 255.0, 0.0)
showSteps = False
def main():
blnKNNTrainingSuccessful = DetectChars.loadKNNDataAndTrainKNN()
if blnKNNTrainingSuccessful == False:
print ("\nerror: KNN training was not successful\n")
return
imgOriginalScene = cv2.imread("CAR/Malaysia/22.jpg")
if imgOriginalScene is None:
print ("\nerror: image not read from file \n\n")
os.system("pause")
return
if imgOriginalScene is None:
print ("\nerror: image not read from file \n\n")
os.system("pause")
return
listOfPossiblePlates = DetectPlates.detectPlatesInScene(imgOriginalScene)
listOfPossiblePlates = DetectChars.detectCharsInPlates(listOfPossiblePlates)
cv2.imshow("imgOriginalScene", imgOriginalScene)
if len(listOfPossiblePlates) == 0:
print ("\nno license plates were detected\n")
else:
listOfPossiblePlates.sort(key = lambda possiblePlate: len(possiblePlate.strChars), reverse = True)
licPlate = listOfPossiblePlates[0]
cv2.imshow("Image Plate", licPlate.imgPlate)
cv2.imshow("Image Threshold", licPlate.imgThresh)
if len(licPlate.strChars) == 0:
print ("\nno characters were detected\n\n")
return
drawRedRectangleAroundPlate(imgOriginalScene, licPlate)
print ("\nlicense plate read from image = " + licPlate.strChars + "\n")
print ("----------------------------------------")
writeLicensePlateCharsOnImage(imgOriginalScene, licPlate)
cv2.imshow("imgOriginalScene", imgOriginalScene)
cv2.imwrite("imgOriginalScene.png", imgOriginalScene)
cv2.waitKey(0)
return
def drawRedRectangleAroundPlate(imgOriginalScene, licPlate):
p2fRectPoints = cv2.boxPoints(licPlate.rrLocationOfPlateInScene)
cv2.line(imgOriginalScene, tuple(p2fRectPoints[0]), tuple(p2fRectPoints[1]), SCALAR_RED, 2)
cv2.line(imgOriginalScene, tuple(p2fRectPoints[1]), tuple(p2fRectPoints[2]), SCALAR_RED, 2)
cv2.line(imgOriginalScene, tuple(p2fRectPoints[2]), tuple(p2fRectPoints[3]), SCALAR_RED, 2)
cv2.line(imgOriginalScene, tuple(p2fRectPoints[3]), tuple(p2fRectPoints[0]), SCALAR_RED, 2)
def writeLicensePlateCharsOnImage(imgOriginalScene, licPlate):
ptCenterOfTextAreaX = 0
ptCenterOfTextAreaY = 0
ptLowerLeftTextOriginX = 0
ptLowerLeftTextOriginY = 0
sceneHeight, sceneWidth, sceneNumChannels = imgOriginalScene.shape
plateHeight, plateWidth, plateNumChannels = licPlate.imgPlate.shape
intFontFace = cv2.FONT_HERSHEY_SIMPLEX
fltFontScale = float(plateHeight) / 30.0
intFontThickness = int(round(fltFontScale * 2))
textSize, baseline = cv2.getTextSize(licPlate.strChars, intFontFace, fltFontScale, intFontThickness)
( (intPlateCenterX, intPlateCenterY), (intPlateWidth, intPlateHeight), fltCorrectionAngleInDeg ) = licPlate.rrLocationOfPlateInScene
intPlateCenterX = int(intPlateCenterX)
intPlateCenterY = int(intPlateCenterY)
ptCenterOfTextAreaX = int(intPlateCenterX)
if intPlateCenterY < (sceneHeight * 0.75):
ptCenterOfTextAreaY = int(round(intPlateCenterY)) + int(round(plateHeight * 1.6))
else:
ptCenterOfTextAreaY = int(round(intPlateCenterY)) - int(round(plateHeight * 1.6))
textSizeWidth, textSizeHeight = textSize
ptLowerLeftTextOriginX = int(ptCenterOfTextAreaX - (textSizeWidth / 2))
ptLowerLeftTextOriginY = int(ptCenterOfTextAreaY + (textSizeHeight / 2))
cv2.putText(imgOriginalScene, licPlate.strChars, (ptLowerLeftTextOriginX, ptLowerLeftTextOriginY), intFontFace, fltFontScale, SCALAR_CYAN, intFontThickness)
if __name__ == "__main__":
main()
cv2.waitKey()
cv2.destroyAllWindows()
预处理阶段
# Preprocess.py
import numpy as np
import math
# module level variables ##########################################################################
GAUSSIAN_SMOOTH_FILTER_SIZE = (5, 5)
ADAPTIVE_THRESH_BLOCK_SIZE = 19
ADAPTIVE_THRESH_WEIGHT = 9
def preprocess(imgOriginal):
imgGrayscale = extractValue(imgOriginal)
imgMaxContrastGrayscale = maximizeContrast(imgGrayscale)
height, width = imgGrayscale.shape
grayscaled = cv2.cvtColor(imgOriginal,cv2.COLOR_BGR2GRAY)
imgBlurred = np.zeros((height, width, 1), np.uint8)
imgBlurred, otsu = cv2.threshold(grayscaled,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
imgThresh = cv2.medianBlur(otsu,5)
return imgGrayscale, imgThresh
# end function
def extractValue(imgOriginal):
height, width, numChannels = imgOriginal.shape
imgHSV = np.zeros((height, width, 3), np.uint8)
imgHSV = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV)
imgHue, imgSaturation, imgValue = cv2.split(imgHSV)
return imgValue
# end function
def maximizeContrast(imgGrayscale):
height, width = imgGrayscale.shape
imgTopHat = np.zeros((height, width, 1), np.uint8)
imgBlackHat = np.zeros((height, width, 1), np.uint8)
structuringElement = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
imgTopHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_TOPHAT, structuringElement)
imgBlackHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_BLACKHAT, structuringElement)
imgGrayscalePlusTopHat = cv2.add(imgGrayscale, imgTopHat)
imgGrayscalePlusTopHatMinusBlackHat = cv2.subtract(imgGrayscalePlusTopHat, imgBlackHat)
return imgGrayscalePlusTopHatMinusBlackHat
# end function
答案 0 :(得分:0)
我推荐使用Gtk3作为GUI。 这是一个带按钮的简单Gtk窗口:
#!/usr/bin/env python3
import gi
gi.require_version( 'Gtk', '3.0' )
from gi.repository import Gtk
class Window( Gtk.Window ):
def __init__( self ):
Gtk.Window.__init__( self )
self.connect( 'destroy', lambda q: Gtk.main_quit() )
button = Gtk.Button( "Gtk.Button" )
button.connect( "clicked", self.on_button_clicked )
grid = Gtk.Grid( )
grid.attach( button, 0, 0, 1, 1 )
self.add( grid )
self.show_all()
def on_button_clicked( self, button ):
print( "Gtk.Button was clicked" )
w = Window()
Gtk.main()
答案 1 :(得分:0)
如果你想要的只是一个选择文件的窗口,那么这应该可行。
import Tkinter
from Tkinter import *
import tkSimpleDialog
from tkFileDialog import askopenfilename
master = Tk()
master.withdraw()
my_file = askopenfilename()
mainloop()