如何在Python中计算和绘制LOWESS曲线?

时间:2017-03-06 23:34:14

标签: python matplotlib plot statistics statsmodels

如何使用Python找到并绘制如下所示的LOWESS曲线?

loess curve example

我知道LOWESS实现in statsmodels,但它似乎无法给我95%的置信区间线,我可以在它之间遮蔽。 Seaborn has a method调用statsmodels实现,但它不能绘制置信区间。

Other StackOverflow answers提供绘制LOESS / LOWESS行的代码,但没有置信区间。任何人都可以协助吗?有人知道现有的实现能让我这样做吗?

提前致谢。

1 个答案:

答案 0 :(得分:1)

我发现链接here很有用,并将代码放在下面:

def lowess(x, y, f=1./3.):
    """
    Basic LOWESS smoother with uncertainty. 
    Note:
        - Not robust (so no iteration) and
             only normally distributed errors. 
        - No higher order polynomials d=1 
            so linear smoother.
    """
    # get some paras
    xwidth = f*(x.max()-x.min()) # effective width after reduction factor
    N = len(x) # number of obs
    # Don't assume the data is sorted
    order = np.argsort(x)
    # storage
    y_sm = np.zeros_like(y)
    y_stderr = np.zeros_like(y)
    # define the weigthing function -- clipping too!
    tricube = lambda d : np.clip((1- np.abs(d)**3)**3, 0, 1)
    # run the regression for each observation i
    for i in range(N):
        dist = np.abs((x[order][i]-x[order]))/xwidth
        w = tricube(dist)
        # form linear system with the weights
        A = np.stack([w, x[order]*w]).T
        b = w * y[order]
        ATA = A.T.dot(A)
        ATb = A.T.dot(b)
        # solve the syste
        sol = np.linalg.solve(ATA, ATb)
        # predict for the observation only
        yest = A[i].dot(sol)# equiv of A.dot(yest) just for k
        place = order[i]
        y_sm[place]=yest 
        sigma2 = (np.sum((A.dot(sol) -y [order])**2)/N )
        # Calculate the standard error
        y_stderr[place] = np.sqrt(sigma2 * 
                                A[i].dot(np.linalg.inv(ATA)
                                                    ).dot(A[i]))
    return y_sm, y_stderr


import numpy as np
import matplotlib.pyplot as plt


# make some data
x = 5*np.random.random(100)
y = np.sin(x) * 3*np.exp(-x) + np.random.normal(0, 0.2, 100)
order = np.argsort(x)

#run it
y_sm, y_std = lowess(x, y, f=1./5.)
# plot it
plt.plot(x[order], y_sm[order], color='tomato', label='LOWESS')
plt.fill_between(x[order], y_sm[order] - 1.96*y_std[order],
                 y_sm[order] + 1.96*y_std[order], alpha=0.3, label='LOWESS uncertainty')
plt.plot(x, y, 'k.', label='Observations')
plt.legend(loc='best')
#run it
y_sm, y_std = lowess(x, y, f=1./5.)
# plot it
plt.plot(x[order], y_sm[order], color='tomato', label='LOWESS')
plt.fill_between(x[order], y_sm[order] - y_std[order],
                 y_sm[order] + y_std[order], alpha=0.3, label='LOWESS uncertainty')
plt.plot(x, y, 'k.', label='Observations')
plt.legend(loc='best')

enter image description here