并行处理中最佳核心数是多少?

时间:2017-03-06 16:31:21

标签: r parallel-processing doparallel

假设我有一个8核CPU。在R中使用doParallel,当我注册makeCluster(x)时,要使用的理想核心数x是多少?

是否尽可能多的内核?或者使用7核比使用6核慢?对此有什么规定吗?

1 个答案:

答案 0 :(得分:0)

如评论中所述,最佳内核数量取决于手头的任务,但您可以自己找到。初始化7个不同的群集,并对结果进行基准测试。我不会使用所有8个内核,因此您的情况下最多应使用7个内核。

这是一个小的“傻”模板,其中并行化没有意义,因为简单的sapply版本要快得多,因为发送到内核的开销会大大降低性能。

无论如何,插入您要优化的代码,试一试并找到理想的设置;)

require(parallel)
cl2 = makeCluster(2)
cl3 = makeCluster(3)
cl4 = makeCluster(4)
cl5 = makeCluster(5)
cl6 = makeCluster(6)
cl7 = makeCluster(7)

library(microbenchmark)
mc <- microbenchmark(times = 100,
                     noPa = {
                       res = sapply(mtcars, mean, na.rm = TRUE)
                     },
                     cor2 = {
                       res = parSapply(cl2, mtcars, mean, na.rm = TRUE)
                     },
                     cor3 = {
                       res = parSapply(cl3, mtcars, mean, na.rm = TRUE)
                     },
                     cor4 = {
                       res = parSapply(cl4, mtcars, mean, na.rm = TRUE)
                     },
                     cor5 = {
                       res = parSapply(cl5, mtcars, mean, na.rm = TRUE)
                     },
                     cor6 = {
                       res = parSapply(cl6, mtcars, mean, na.rm = TRUE)
                     },
                     cor7 = {
                       res = parSapply(cl7, mtcars, mean, na.rm = TRUE)
                     }
); mc

stopCluster(cl2);stopCluster(cl3);stopCluster(cl4);
stopCluster(cl5);stopCluster(cl6);stopCluster(cl7)
Unit: microseconds
 expr      min        lq       mean   median        uq       max neval
 noPa   77.370   94.4365   97.52549   97.281  101.5475   131.983   100
 cor2  713.388  804.1260  947.56529  836.553  887.4680  7178.812   100
 cor3  840.250  941.2275 1071.55460  967.681 1027.4145  5343.576   100
 cor4  877.797 1046.7570 1194.51996 1077.761 1132.3745  7028.057   100
 cor5 1032.535 1139.2015 1303.64424 1190.686 1241.3170  8148.199   100
 cor6 1141.761 1222.5430 1438.18655 1261.797 1339.1655 10589.302   100
 cor7 1269.192 1345.4240 1586.03513 1399.468 1487.3615 10547.204   100

在这里是一个并行化示例。根据结果​​,7个内核将是最快的解决方案。如果您在自己的计算机上运行它,并且想在它旁边做其他事情,那么我会选择4个内核,因为时间可比,并且计算机无法以最大容量运行。

library(lme4)
f <- function(i) {
  lmer(Petal.Width ~ . - Species + (1 | Species), data = iris)
}

library(microbenchmark)
mc <- microbenchmark(times = 3,
                     noPa = {
                       res = sapply(1:100, f)
                     },
                     cor2 = {
                       res = parSapply(cl2, 1:100, f)
                     },
                     cor3 = {
                       res = parSapply(cl3, 1:100, f)
                     },
                     cor4 = {
                       res = parSapply(cl4, 1:100, f)
                     },
                     cor5 = {
                       res = parSapply(cl5, 1:100, f)
                     },
                     cor6 = {
                       res = parSapply(cl6, 1:100, f)
                     },
                     cor7 = {
                       res = parSapply(cl7, 1:100, f)
                     }
); mc
Unit: milliseconds
 expr       min        lq      mean    median       uq      max neval
 noPa 1925.2889 1964.9473 2169.9294 2004.6057 2292.250 2579.894     3
 cor2 1501.8176 1591.5596 1722.1834 1681.3015 1832.366 1983.431     3
 cor3 1097.4251 1188.6271 1345.1643 1279.8291 1469.034 1658.239     3
 cor4  956.9829 1007.6607 1302.2984 1058.3384 1474.956 1891.574     3
 cor5 1027.5877 1872.3501 2379.9384 2717.1125 3056.114 3395.115     3
 cor6 1001.2572 1048.8277 1217.5999 1096.3983 1325.771 1555.144     3
 cor7  815.2055  905.7948  945.7555  996.3841 1011.030 1025.677     3