我想将我的数据分成两半。因此,在我的示例数据中,我需要将结果分成两个独立的数据帧,一个是每年的前50%,另一个是另一半。附加条件是50%需要基于列'LG'。
任何人都可以帮我吗?
示例数据:
import pandas as pd
import numpy as np
df = pd.DataFrame(
{'LG' : ('AR1', 'AR1', 'AR1', 'AR1', 'AR1', 'AR1', 'PO1', 'PO1', 'AR1', 'AR1', 'PO1', 'PO1'),
'Date': ('2011-1-1', '2011-3-1', '2011-4-1', '2011-2-1', '2012-1-1', '2012-2-1', '2012-1-1', '2012-2-1', '2013-1-1', '2013-2-1', '2013-1-1', '2013-2-1'),
'Year': (2011, 2011, 2011, 2011, 2012, 2012, 2012, 2012, 2013, 2013, 2013, 2013)})
pd.to_datetime(df['Date'])
DF:
Date LG Year
0 2011-01-01 AR1 2011
1 2011-03-01 AR1 2011
2 2011-04-01 AR1 2011
3 2011-02-01 AR1 2011
4 2012-01-01 AR1 2012
5 2012-02-01 AR1 2012
6 2012-01-01 PO1 2012
7 2012-02-01 PO1 2012
8 2013-01-01 AR1 2013
9 2013-02-01 AR1 2013
10 2013-01-01 PO1 2013
11 2013-02-01 PO1 2013
答案 0 :(得分:1)
在Year
和LG
上分组后,将相框拆分为一半。基本思路是在组中查找小于组大小50%的位置
<强>代码:强>
# group by 'Year' and 'LG'
idx = ['Year', 'LG']
# build a grouper
group_by = df.groupby(idx, as_index=False)
# need frame to re-expand the group size
df1 = df.set_index(idx)
df1['g_size'] = group_by.size()
# find the rows in the top half of respective group
top_half = (group_by.cumcount() / df1.g_size.values).values < 0.5
# build new data frames
top = df.loc[top_half]
bot = df.loc[~top_half]
日期排序代码:
如果框架需要在拆分前按日期排序,但不希望排序在原始DataFrame中...
# group by 'Year' and 'LG'
idx = ['Year', 'LG']
# sort by date
df1 = df.sort('Date')
# build a grouper
group_by = df1.groupby(idx, as_index=False)
# Need to set the index to match the result of groupby.size()
df1 = df1.set_index(idx)
df1['g_size'] = group_by.size()
# find the rows in the top half of respective group
top_half = (group_by.cumcount() / df1.g_size.values).values < 0.5
# build new data frames
top = df1.loc[top_half].drop('g_size', axis=1).reset_index()
bot = df1.loc[~top_half].drop('g_size', axis=1).reset_index()
测试代码:
print(df)
print('-- top')
print(top)
print('-- bot')
print(bot)
print('--')
排序结果:
Date LG Year
0 2011-1-1 AR1 2011
1 2011-3-1 AR1 2011
2 2011-4-1 AR1 2011
3 2011-2-1 AR1 2011
4 2012-1-1 AR1 2012
5 2012-2-1 AR1 2012
6 2012-1-1 PO1 2012
7 2012-2-1 PO1 2012
8 2013-1-1 AR1 2013
9 2013-2-1 AR1 2013
10 2013-1-1 PO1 2013
11 2013-2-1 PO1 2013
-- top
Year LG Date
0 2011 AR1 2011-1-1
1 2011 AR1 2011-2-1
2 2012 AR1 2012-1-1
3 2012 PO1 2012-1-1
4 2013 AR1 2013-1-1
5 2013 PO1 2013-1-1
-- bot
Year LG Date
0 2011 AR1 2011-3-1
1 2011 AR1 2011-4-1
2 2012 AR1 2012-2-1
3 2012 PO1 2012-2-1
4 2013 AR1 2013-2-1
5 2013 PO1 2013-2-1
测试数据:
df = pd.DataFrame({
'LG': ('AR1', 'AR1', 'AR1', 'AR1', 'AR1', 'AR1',
'PO1', 'PO1', 'AR1', 'AR1', 'PO1', 'PO1'),
'Date': ('2011-1-1', '2011-3-1', '2011-4-1', '2011-2-1', '2012-1-1',
'2012-2-1', '2012-1-1', '2012-2-1', '2013-1-1', '2013-2-1',
'2013-1-1', '2013-2-1'),
'Year': (2011, 2011, 2011, 2011, 2012, 2012, 2012, 2012, 2013,
2013, 2013, 2013)
})
pd.to_datetime(df['Date'])