我一直在关注https://github.com/kvfrans/twitch/blob/master/main.py教程,使用tensorflow创建和训练基于rnn的聊天机器人。根据我的理解,这些教程是在旧版本的tensorflow上编写的,所以有些部分已经过时,给我一个错误,如:
Traceback (most recent call last):
File "main.py", line 33, in <module>
outputs, last_state = tf.nn.seq2seq.rnn_decoder(inputs, initialstate, cell, loop_function=None, scope='rnnlm')
AttributeError: 'module' object has no attribute 'seq2seq'
我修复了其中的一部分,但无法弄清楚tf.nn.seq2seq.rnn_decoder
的替代方案是什么以及新模块的参数应该是什么。我目前修正的内容:
tf.nn.rnn_cell.BasicLSTMCell(embedsize)
改为
tf.contrib.rnn.BasicLSTMCell(embedsize)
tf.nn.rnn_cell.DropoutWrapper(lstm_cell,keep_prob)
已更改为tf.contrib.rnn.DropoutWrapper(lstm_cell,keep_prob)
tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * numlayers)
改为
tf.contrib.rnn.MultiRNNCell([lstm_cell] * numlayers)
有人可以帮我弄清楚tf.nn.seq2seq.rnn_decoder
会是什么吗?
答案 0 :(得分:3)
我认为你需要this:
extension Collection {
// EZSE : A parralelized map for collections, operation is non blocking
public func pmap<R>(_ each: (Self.Iterator.Element) -> R) -> [R?] {
let indices = indicesArray()
var res = [R?](repeating: nil, count: indices.count)
DispatchQueue.concurrentPerform(iterations: indices.count) { (index) in
let elementIndex = indices[index]
res[index] = each(self[elementIndex])
}
// Above code is non blocking so partial exec on most runs
return res
}
/// EZSE : Helper method to get an array of collection indices
private func indicesArray() -> [Self.Index] {
var indicesArray: [Self.Index] = []
var nextIndex = startIndex
while nextIndex != endIndex {
indicesArray.append(nextIndex)
nextIndex = index(after: nextIndex)
}
return indicesArray
}
}