我无法运行我的代码Tensorflow

时间:2017-03-06 06:25:49

标签: python compiler-errors tensorflow deep-learning tensorboard

我在Ubuntu 14.04工作,我写了一个代码来识别Tensorflow V 0.11的字母, 我创建了一个使用模型LeNet5的代码源 我的代码来源:

`

import PIL

import numpy
import tensorflow as tf
# from tensorflow.examples.tutorials.mnist import input_data
import Input as input_data
from tensorflow.python.framework.importer import import_graph_def

from Resize import Resize_img

# these functions to optimize the accurancy of the mnist training
#from imp_image import imp_img
import scipy.misc


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


# ============================================================ End Functions part

# mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

class MNIST:

    def __init__(self):

        # Open the compuation session
        self.sess = tf.InteractiveSession()
        # Load the network
        self.Deep_Network()

    def Deep_Network(self):

        # nodes for the input images and target output classes.
        # supervised classifier
        self.x = tf.placeholder(tf.float32, shape=[None, 784])
        self.y_ = tf.placeholder(tf.float32, shape=[None, 10])

        # First convolutionanal Layer =====================================
        # It will consist of convolution, followed by max pooling
        # The convolutional will compute 32 features for each 5x5 patch.
        self.W_conv1 = weight_variable([5, 5, 1, 32])
        self.b_conv1 = bias_variable([32])

        # To apply the layer, we first reshape x to a 4d tensor,
        #  with the second and third dimensions corresponding to image width and height,
        #  and the final dimension corresponding to the number of color channels.
        self.x_image = tf.reshape(self.x, [-1, 28, 28, 1])

        # We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool.
        self.h_conv1 = tf.nn.relu(conv2d(self.x_image, self.W_conv1) + self.b_conv1)
        self.h_pool1 = max_pool_2x2(self.h_conv1)

        # Second Convolutional Layer =====================================

        # In order to build a deep network, we stack several layers of this type.
        # The second layer will have 64 features for each 5x5 patch.

        self.W_conv2 = weight_variable([5, 5, 32, 64])
        self.b_conv2 = bias_variable([64])

        self.h_conv2 = tf.nn.relu(conv2d(self.h_pool1, self.W_conv2) + self.b_conv2)
        self.h_pool2 = max_pool_2x2(self.h_conv2)

        # Densely Connected Layer

        # Now that the image size has been reduced to 7x7, we add a fully-connected layer with 1024 neurons
        # to allow processing on the entire image. We reshape the tensor from the pooling layer into
        # a batch of vectors, multiply by a weight matrix, add a bias, and apply a ReLU.

        self.W_fc1 = weight_variable([7 * 7 * 64, 1024])
        self.b_fc1 = bias_variable([1024])

        self.h_pool2_flat = tf.reshape(self.h_pool2, [-1, 7 * 7 * 64])
        self.h_fc1 = tf.nn.relu(
            tf.matmul(self.h_pool2_flat, self.W_fc1) + self.b_fc1)  # ReLu Computes rectified linear: max(features, 0).

        # Dropout

        self.keep_prob = tf.placeholder(tf.float32)
        self.h_fc1_drop = tf.nn.dropout(self.h_fc1, self.keep_prob)

        # Readout Layer ========================================
        # Finally, we add a softmax layer, just like for the one layer softmax regression above.

        self.W_fc2 = weight_variable([1024, 10])
        self.b_fc2 = bias_variable([10])

        self.y_conv = tf.nn.softmax(tf.matmul(self.h_fc1_drop, self.W_fc2) + self.b_fc2)
        self.cross_entropy = -tf.reduce_sum(self.y_ * tf.log(self.y_conv))
        self.correct_prediction = tf.equal(tf.argmax(self.y_conv, 1), tf.argmax(self.y_, 1))
        self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))

    def Prediction(self, imageName):

        # Load the trained model
        ' Restore the model '
        'here i should create the model saver'
        Saved_model_dir = '/home/brm17/Desktop/PFE/'
        saver = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(Saved_model_dir)

        'verifie if the saved model exists or not!'
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(self.sess, ckpt.model_checkpoint_path)
        else:
            print '# No saved model found!'
            exit()  # exit the prgm

        # image_test = 'number-3.jpg'
        ResizedImage = Resize_img(imageName)

        ImageInput = ResizedImage.mnist_image_input.reshape(1, -1)

        print 'Predection > ', tf.argmax(self.y_conv, 1).eval(feed_dict={self.x: ImageInput, self.keep_prob: 1.0})

    # print("test accuracy %g"%accuracy.eval(feed_dict={x: myTestImg, y_: myLabel, keep_prob: 1.0}))


def main():
    image = '/home/brm17/Desktop/PFE/n2.jpeg'
    model = MNIST()
    model.Prediction(image)

if __name__ == "__main__":
    main()

`

如果我运行此代码,他会打印错误:

brm17@Brahim:~/Desktop/PFE$ python LeNet5.py 
Traceback (most recent call last):
  File "LeNet5.py", line 137, in <module>
    model.Prediction(image)
  File "LeNet5.py", line 120, in Prediction
    saver.restore(self.sess, ckpt.model_checkpoint_path)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 1129, in restore
    {self.saver_def.filename_tensor_name: save_path})
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.NotFoundError: Tensor name "Variable_1" not found in checkpoint files /home/brm17/Desktop/PFE/MNISTmodel-20000
     [[Node: save/restore_slice_1 = RestoreSlice[dt=DT_FLOAT, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
Caused by op u'save/restore_slice_1', defined at:
  File "LeNet5.py", line 137, in <module>
    model.Prediction(image)
  File "LeNet5.py", line 115, in Prediction
    saver = tf.train.Saver()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 861, in __init__
    restore_sequentially=restore_sequentially)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 519, in build
    filename_tensor, vars_to_save, restore_sequentially, reshape)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 272, in _AddRestoreOps
    values = self.restore_op(filename_tensor, vs, preferred_shard)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 187, in restore_op
    preferred_shard=preferred_shard)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py", line 203, in _restore_slice
    preferred_shard, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 359, in _restore_slice
    preferred_shard=preferred_shard, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2317, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__
    self._traceback = _extract_stack()

问题是什么以及如何解决这个问题?

1 个答案:

答案 0 :(得分:0)

Covißio,

我认为问题如下:

  • 您创建了一个网络,并保存了该网络......
  • 您更改了网络,但未删除已保存的网络
  • 现在您尝试从旧版本重新加载网络,但您创建的新变量不存在。

你可以尝试:

  • 删除已保存的网络状态并重新训练
  • 删除网络的保存和加载,看看是否有效? 您可以通过删除文件夹/ home / brm17 / Desktop / PFE /
  • 中的检查点文件来删除网络状态

编辑:彻底阅读您的代码,问题是如果没有检查点,您就不会开始重新训练网络......也许您可以在保存,加载和更改网络之前编写此代码。

祝你好运,如果有效,请告诉我!