我有一些树状结构的文件。例如:
A
Result
a11
a12
Lolim
a21
a22
Uplim
a31
a32
B
Result
b11
b12
Lolim
b21
b22
我有兴趣解析这些文件以获得如下所示的数据框:
Name Result Lolim Uplim
A a12 a22 a32
B b12 b22 NA
我的想法是将文件以某种方式分成两部分:A和B.然后在子类别中拆分每个部分。对于A,结果,Lolim和Uplim以及B结果和Lolim。最后每个子类别分为2部分。因此,我最终会得到一个嵌套列表,而且我将能够创建一个数据帧。但我不知道如何获得这个嵌套列表。
还是有其他方法吗?你能推荐一些有用的模块或功能吗?
答案 0 :(得分:2)
import collections
import pandas as pd
with open("data_tree.dat", "r") as data:
dct = collections.OrderedDict()
key = ""
sub_key = ""
for line in data:
if " " not in line: # single space
key = line.strip()
dct[key] = collections.OrderedDict()
elif " " * 4 in line and " " * 6 not in line: # 4 spaces
sub_key = line.strip()
dct[key][sub_key] = ""
elif " " * 6 in line: # 6 spaces
item = line.strip()
dct[key][sub_key] = item # overwrite, last element only
df = pd.DataFrame.from_dict(dct).transpose()
df.columns.names = ["Name"]
df = df[["Result", "Lolim", "Uplim"]] # if column order matters
df = df.fillna("NA") # in case you want NA and not NaN
print(df)
输出:
Name Result Lolim Uplim
A a12 a22 a32
B b12 b22 NA
这假设data_tree.dat
看起来像this,并且包含在与包含上述代码的.py
文件相同的文件夹中。
或作为一项功能:
import collections
import pandas as pd
def dat_to_df(path_to_file):
with open(path_to_file, "r") as data:
dct = collections.OrderedDict()
key = ""
sub_key = ""
for line in data:
if " " not in line:
key = line.strip()
dct[key] = collections.OrderedDict()
elif " " * 4 in line and " " * 6 not in line:
sub_key = line.strip()
dct[key][sub_key] = ""
elif " " * 6 in line:
item = line.strip()
dct[key][sub_key] = item
df = pd.DataFrame.from_dict(dct).transpose()
df.columns.names = ["Name"]
df = df[["Result", "Lolim", "Uplim"]]
return df.fillna("NA")
dataframe = dat_to_df("data_tree.dat")
print(dataframe)