任何人都可以帮我转换为C#。它确实伤害了我的大脑。
http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
require 'statistics2'
def ci_lower_bound(pos, n, power)
if n == 0
return 0
end
z = Statistics2.pnormaldist(1-power/2)
phat = 1.0*pos/n
(phat + z*z/(2*n) - z * Math.sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n)
end
这是什么意思?
Statistics2.pnormaldist(1-power/2)
答案 0 :(得分:5)
如果有人有兴趣......
pnormaldist做了更多的Google搜索引导我进入这个stackoverflow artice:Objective-C implementation of the Wilson Score Interval我将此目标-c转换为C#,并且完全未经测试
public class WilsonScore
{
private static double pnormaldist(double qn)
{
double[] b = { 1.570796288, 0.03706987906, -0.8364353589e-3, -0.2250947176e-3,
0.6841218299e-5, 0.5824238515e-5, -0.104527497e-5,
0.8360937017e-7, -0.3231081277e-8, 0.3657763036e-10,
0.6936233982e-12 };
if (qn < 0.0 || 1.0 < qn)
return 0.0;
if (qn == 0.5)
return 0.0;
double w1 = qn;
if (qn > 0.5)
w1 = 1.0 - w1;
double w3 = -Math.Log(4.0 * w1 * (1.0 - w1));
w1 = b[0];
int i = 1;
for (; i < 11; i++)
w1 += b[i] * Math.Pow(w3, i);
if (qn > 0.5)
return Math.Sqrt(w1 * w3);
return -Math.Sqrt(w1 * w3);
}
public static double ci_lower_bound(int pos, int n, double power)
{
if (n == 0)
return 0.0;
double z = pnormaldist(1 - power / 2);
double phat = 1.0 * pos / n;
return (phat + z * z / (2 * n) - z * Math.Sqrt((phat * (1 - phat) + z * z / (4 * n)) / n)) / (1 + z * z / n);
}
}
答案 1 :(得分:2)
你有没有试过谷歌吗?
首先回复,直接来自MSDN。
答案 2 :(得分:1)
这是与Ruby相同的库:
https://github.com/abscondment/statistics2/blob/master/lib/statistics2.rb https://github.com/abscondment/statistics2/blob/master/lib/statistics2/version.rb
答案 3 :(得分:0)
这是我的解决方案,与公认的解决方案几乎相同,但是我的解决方案已经过测试。我没有复制解决方案,而是制定了策略:受How Not To Sort By Average Rating的启发,我编写了Wilson区间和用于检查多个ruby和python存储库的逆累积密度函数。
/// <summary>
/// Computes confidence interval.
/// </summary>
public static class ConfidenceInterval
{
/// <summary>
/// Calculates the Wilson Score Interval based on the total positives and the class positives (like positive votes).
/// <see href="https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval" />
/// <see href="http://www.evanmiller.org/how-not-to-sort-by-average-rating.html" />
/// </summary>
/// <param name="positives">Number of class positives.</param>
/// <param name="total">Total number of positives.</param>
/// <param name="confidence">
/// Confidence level or coverage. Quantifies the level of confidence that the deterministic
/// parameter is captured by the interval. Defaults to 0.95 (95%).
/// </param>
public static Interval WilsonScoreInterval(long positives, long total, double confidence = 0.95)
{
if (total <= 0 || total < positives)
{
return new Interval();
}
positives = positives < 0 ? 0 : positives;
var quantile = 1 - (1 - confidence) / 2;
var z = PNormalDist(quantile);
double n = total;
var pHat = positives / n;
var z2 = z * z;
var hat = pHat + z2 / (2 * n);
var sqrt = z * Math.Sqrt((pHat * (1 - pHat) + z2 / (4 * n)) / n);
var divisor = 1 + z2 / n;
return new Interval {
LowerBound = (hat - sqrt) / divisor,
UpperBound = (hat + sqrt) / divisor
};
}
/// <summary>
/// Inverse of normal-distribution. P( (-infinity, x] ) = quantile -> x
/// </summary>
/// <param name="quantile">Probability quantile. <see href="https://en.wikipedia.org/wiki/Quantile" /></param>
/// <returns>The inverse Cumulative Density Function or P-value of the corresponding integral.</returns>
private static double PNormalDist(double quantile)
{
if (quantile < 0.0 || 1.0 < quantile || Math.Abs(quantile - 0.5) < 0.0000001)
{
return 0.0;
}
double[] pNormTable = {
1.570796288,
0.03706987906,
-0.8364353589e-3,
-0.2250947176e-3,
0.6841218299e-5,
0.5824238515e-5,
-0.104527497e-5,
0.8360937017e-7,
-0.3231081277e-8,
0.3657763036e-10,
0.6936233982e-12
};
var temp1 = quantile > 0.5 ? 1.0 - quantile : quantile;
var temp2 = -Math.Log(4.0 * temp1 * (1.0 - temp1));
var temp3 = pNormTable[0];
for (var i = 1; i < 11; i++)
{
temp3 += pNormTable[i] * Math.Pow(temp2, i);
}
return quantile > 0.5 ? Math.Sqrt(temp3 * temp2) : -Math.Sqrt(temp3 * temp2);
}
public class Interval
{
/// <summary>
/// Lower bound.
/// </summary>
public double LowerBound { get; set; }
/// <summary>
/// Upper bound.
/// </summary>
public double UpperBound { get; set; } = 1;
}
}