Spark Java:如何将数据从HTTP源移动到Couchbase接收器?

时间:2017-03-04 20:37:30

标签: apache-spark apache-spark-sql spark-streaming spark-dataframe couchbase

我在Web服务器上有一个.gz文件,我希望以流方式使用,并将数据插入Couchbase。 .gz文件中只有一个文件,每行包含一个JSON对象。

由于Spark没有HTTP接收器,我自己写了一个(如下所示)。我正在使用Couchbase Spark connector进行插入。但是,在运行时,作业实际上并没有插入任何内容。我怀疑这是因为我对Spark缺乏经验而不知道如何开始并等待终止。如下所示,有2个地方可以进行此类调用。

接收机

public class HttpReceiver extends Receiver<String> {
    private final String url;

    public HttpReceiver(String url) {
        super(MEMORY_AND_DISK());
        this.url = url;
    }

    @Override
    public void onStart() {
        new Thread(() -> receive()).start();
    }

    private void receive() {
        try {
            HttpURLConnection conn = (HttpURLConnection) new URL(url).openConnection();
            conn.setAllowUserInteraction(false);
            conn.setInstanceFollowRedirects(true);
            conn.setRequestMethod("GET");
            conn.setReadTimeout(60 * 1000);

            InputStream gzipStream = new GZIPInputStream(conn.getInputStream());
            Reader decoder = new InputStreamReader(gzipStream, UTF_8);
            BufferedReader reader = new BufferedReader(decoder);

            String json = null;
            while (!isStopped() && (json = reader.readLine()) != null) {
                store(json);
            }
            reader.close();
            conn.disconnect();
        } catch (IOException e) {
            stop(e.getMessage(), e);
        }
    }

    @Override
    public void onStop() {

    }
}

DATALOAD

public void load(String url) throws StreamingQueryException, InterruptedException {
        JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(1000));
        JavaReceiverInputDStream<String> lines = ssc.receiverStream(new HttpReceiver(url));

        lines.foreachRDD(rdd ->
                sql.read().json(rdd)
                        .select(new Column("id"),
                                new Column("name"),
                                new Column("rating"),
                                new Column("review_count"),
                                new Column("hours"),
                                new Column("attributes"))
                        .writeStream()
                        .option("idField", "id")
                        .format("com.couchbase.spark.sql")
                        .start()
//                        .awaitTermination(sparkProperties.getTerminationTimeoutMillis())
        );

//        ssc.start();
        ssc.awaitTerminationOrTimeout(sparkProperties.getTerminationTimeoutMillis());
}

评论的行显示我对启动和终止作业的困惑。此外,如果接收器出现问题或者可以改进接收器,请随时对接收器发表评论。

将Spark v2.1.0与Java结合使用。

修改1

也试过这个实现:

lines.foreachRDD(rdd ->
          couchbaseWriter(sql.read().json(rdd)
                  .select(new Column("id"),
                          new Column("name"),
                          new Column("rating"),
                          new Column("review_count"),
                          new Column("hours"),
                          new Column("attributes"))
                  .write()
                  .option("idField", "id")
                  .format("com.couchbase.spark.sql"))
                  .couchbase()
  );

  ssc.start();
  ssc.awaitTermination();

但它会抛出IllegalStateException: SparkContext has been shutdown

11004 [JobScheduler] ERROR org.apache.spark.streaming.scheduler.JobScheduler  - Error running job streaming job 1488664987000 ms.0
java.lang.IllegalStateException: SparkContext has been shutdown
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1910)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1981)
    at org.apache.spark.rdd.RDD$$anonfun$fold$1.apply(RDD.scala:1088)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.fold(RDD.scala:1082)
    at org.apache.spark.sql.execution.datasources.json.InferSchema$.infer(InferSchema.scala:69)

编辑2 : 原来编辑1的错误是由我关闭上下文的@PostDestruct方法引起的。我正在使用Spring,并且bean应该是单例,但不知何故Spark会在作业完成之前导致它被破坏。我现在删除了@PostDestruct并进行了一些更改;以下似乎有效但有开放性问题:

public void load(String dataDirURL, String format) throws StreamingQueryException, InterruptedException {
    JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(1000));
    JavaReceiverInputDStream<String> lines = ssc.receiverStream(new HttpReceiver(dataDirURL));

    lines.foreachRDD(rdd -> {
        try {
            Dataset<Row> select = sql.read().json(rdd)
                    .select("id", "name", "rating", "review_count", "hours", "attributes");
            couchbaseWriter(select.write()
                    .option("idField", "id")
                    .format(format))
                    .couchbase();
        } catch (Exception e) {
            // Time to time throws AnalysisException: cannot resolve '`id`' given input columns: [];
        }
    });

    ssc.start();
    ssc.awaitTerminationOrTimeout(sparkProperties.getTerminationTimeoutMillis());
}

开放式问题:

  1. 不时抛出 AnalysisException: cannot resolve ' ID为' given input columns: [];。这是我接收器的问题吗?
  2. 当文档已存在时,任务失败并出现以下异常。在我的情况下,我只想覆盖文档,如果存在,而不是炸毁。

    Lost task 1.0 in stage 2.0 (TID 4, localhost, executor driver): com.couchbase.client.java.error.DocumentAlreadyExistsException
    at com.couchbase.client.java.CouchbaseAsyncBucket$13.call(CouchbaseAsyncBucket.java:475)
    

1 个答案:

答案 0 :(得分:1)

回答我自己的问题,这是我最终没有任何例外的工作:

public void load(String dataDirURL, String format) throws InterruptedException {
    JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(1000));
    JavaReceiverInputDStream<String> lines = ssc.receiverStream(new HttpReceiver(dataDirURL));

    ObjectMapper objectMapper = new ObjectMapper();

    lines.foreachRDD(rdd -> {
                JavaRDD<RawJsonDocument> docRdd = rdd
                        .filter(content -> !isEmpty(content))
                        .map(content -> {
                            String id = "";
                            String modifiedContent = "";
                            try {
                                ObjectNode node = objectMapper.readValue(content, ObjectNode.class);
                                if (node.has("id")) {
                                    id = node.get("id").textValue();
                                    modifiedContent = objectMapper.writeValueAsString(node.retain(ALLOWED_FIELDS));
                                }
                            } catch (IOException e) {
                                e.printStackTrace();
                            } finally {
                                return RawJsonDocument.create(id, modifiedContent);
                            }
                        })
                        .filter(doc -> !isEmpty(doc.id()));
                couchbaseDocumentRDD(docRdd)
                        .saveToCouchbase(UPSERT);
            }
    );

    ssc.start();
    ssc.awaitTerminationOrTimeout(sparkProperties.getTerminationTimeoutMillis());
}