我面临以下问题。我正在尝试并行化一个更新文件的函数,但由于Pool()
,我无法启动OSError: [Errno 12] Cannot allocate memory
。我开始在服务器上四处看看,这并不像我使用旧的,弱的/实际内存。
见htop
:
此外,free -m
表明除了大约7GB的交换内存外,我还有足够的RAM可用:
而我正在尝试使用的文件也不是那么大。我将在下面粘贴我的代码(和堆栈跟踪),其大小如下:
使用的predictionmatrix
数据框占用大约根据{{1}}的80MB
文件pandasdataframe.memory_usage()
为2MB
我该如何调试?我可以检查什么以及如何检查?感谢您提供任何提示/技巧!
代码:
geo.geojson
堆栈追踪:
def parallelUpdateJSON(paramMatch, predictionmatrix, data):
for feature in data['features']:
currentfeature = predictionmatrix[(predictionmatrix['SId']==feature['properties']['cellId']) & paramMatch]
if (len(currentfeature) > 0):
feature['properties'].update({"style": {"opacity": currentfeature.AllActivity.item()}})
else:
feature['properties'].update({"style": {"opacity": 0}})
def writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix):
with open('geo.geojson') as f:
data = json.load(f)
paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
pool = Pool()
func = partial(parallelUpdateJSON, paramMatch, predictionmatrix)
pool.map(func, data)
pool.close()
pool.join()
with open('output.geojson', 'w') as outfile:
json.dump(data, outfile)
更新
根据@ robyschek的解决方案,我已将代码更新为:
---------------------------------------------------------------------------
OSError Traceback (most recent call last)
<ipython-input-428-d6121ed2750b> in <module>()
----> 1 writeGeoJSON(6, 15, baseline)
<ipython-input-427-973b7a5a8acc> in writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix)
14 print("Start loop")
15 paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
---> 16 pool = Pool(2)
17 func = partial(parallelUpdateJSON, paramMatch, predictionmatrix)
18 print(predictionmatrix.memory_usage())
/usr/lib/python3.5/multiprocessing/context.py in Pool(self, processes, initializer, initargs, maxtasksperchild)
116 from .pool import Pool
117 return Pool(processes, initializer, initargs, maxtasksperchild,
--> 118 context=self.get_context())
119
120 def RawValue(self, typecode_or_type, *args):
/usr/lib/python3.5/multiprocessing/pool.py in __init__(self, processes, initializer, initargs, maxtasksperchild, context)
166 self._processes = processes
167 self._pool = []
--> 168 self._repopulate_pool()
169
170 self._worker_handler = threading.Thread(
/usr/lib/python3.5/multiprocessing/pool.py in _repopulate_pool(self)
231 w.name = w.name.replace('Process', 'PoolWorker')
232 w.daemon = True
--> 233 w.start()
234 util.debug('added worker')
235
/usr/lib/python3.5/multiprocessing/process.py in start(self)
103 'daemonic processes are not allowed to have children'
104 _cleanup()
--> 105 self._popen = self._Popen(self)
106 self._sentinel = self._popen.sentinel
107 _children.add(self)
/usr/lib/python3.5/multiprocessing/context.py in _Popen(process_obj)
265 def _Popen(process_obj):
266 from .popen_fork import Popen
--> 267 return Popen(process_obj)
268
269 class SpawnProcess(process.BaseProcess):
/usr/lib/python3.5/multiprocessing/popen_fork.py in __init__(self, process_obj)
18 sys.stderr.flush()
19 self.returncode = None
---> 20 self._launch(process_obj)
21
22 def duplicate_for_child(self, fd):
/usr/lib/python3.5/multiprocessing/popen_fork.py in _launch(self, process_obj)
65 code = 1
66 parent_r, child_w = os.pipe()
---> 67 self.pid = os.fork()
68 if self.pid == 0:
69 try:
OSError: [Errno 12] Cannot allocate memory
我仍然得到同样的错误。另外,根据documentation,global g_predictionmatrix
def worker_init(predictionmatrix):
global g_predictionmatrix
g_predictionmatrix = predictionmatrix
def parallelUpdateJSON(paramMatch, data_item):
for feature in data_item['features']:
currentfeature = predictionmatrix[(predictionmatrix['SId']==feature['properties']['cellId']) & paramMatch]
if (len(currentfeature) > 0):
feature['properties'].update({"style": {"opacity": currentfeature.AllActivity.item()}})
else:
feature['properties'].update({"style": {"opacity": 0}})
def use_the_pool(data, paramMatch, predictionmatrix):
pool = Pool(initializer=worker_init, initargs=(predictionmatrix,))
func = partial(parallelUpdateJSON, paramMatch)
pool.map(func, data)
pool.close()
pool.join()
def writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix):
with open('geo.geojson') as f:
data = json.load(f)
paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
use_the_pool(data, paramMatch, predictionmatrix)
with open('trentino-grid.geojson', 'w') as outfile:
json.dump(data, outfile)
应该将我的map()
划分为块,所以我认为它不应该复制我的80 MB rownum次。我可能错了...... :)
另外我注意到如果我使用较小的输入(~11MB而不是80MB),我不会得到错误。所以我想我正在尝试使用太多的内存,但我无法想象它是如何从80MB到16GB的RAM无法处理的。
答案 0 :(得分:6)
使用multiprocessing.Pool
时,启动流程的默认方式是fork
。 fork
的问题是整个过程是重复的。 (see details here)。因此,如果您的主进程已经使用了大量内存,则此内存将被复制,并达到此MemoryError
。例如,如果您的主进程使用2GB
内存而您使用了8个子进程,则RAM中需要18GB
。
您应该尝试使用其他启动方法,例如'forkserver'
或'spawn'
:
from multiprocessing import set_start_method, Pool
set_start_method('forkserver')
# You can then start your Pool without each process
# cloning your entire memory
pool = Pool()
func = partial(parallelUpdateJSON, paramMatch, predictionmatrix)
pool.map(func, data)
这些方法避免重复Process
的工作区,但由于您需要重新加载正在使用的模块,因此启动速度可能会慢一些。
答案 1 :(得分:4)
我们有这个时间。据我的系统管理员说,有一个错误&#34;在unix中,如果你的内存不足则会引发相同的错误,如果你的进程达到了最大文件描述符限制。
我们有文件描述符泄漏,错误提升是[Errno 12]无法分配内存#012OSError。
所以你应该看看你的脚本并仔细检查问题是不是创建了太多FD而不是