我有以下pandas数据帧:
import pandas as pd
import numpy as np
df = pd.DataFrame({"shops": ["shop1", "shop2", "shop3", "shop4", "shop5", "shop6"], "franchise" : ["franchise_A", "franchise_A", "franchise_A", "franchise_A", "franchise_B", "franchise_B"],"items" : ["dog", "cat", "dog", "dog", "bird", "fish"]})
df = df[["shops", "franchise", "items"]]
print(df)
shops franchise items
0 shop1 franchise_A dog
1 shop2 franchise_A cat
2 shop3 franchise_A dog
3 shop4 franchise_A dog
4 shop5 franchise_B bird
5 shop6 franchise_B fish
因此,每行都是一个独特的样本shop1
,shop2
等,其中每个样本属于一个子群franchise_A
,franchise_B
,franchise_C
,等等
在items
列中,可能只有四个分类值:dog
,cat
,fish
,bird
。我的动机是为每个“特许经营权”创建一个dog
,cat
,fish
,bird
数量的条形图。
我希望输出为
franchise dogs cats birds fish
franchise_A 3 1 0 0
franchise_B 0 0 1 1
我相信我首先必须使用groupby()
,例如
df.groupby("franchise").count()
shops items
franchise
franchise_A 4 4
franchise_B 2 2
但我不确定我如何计算每个特许经营项目的数量。
答案 0 :(得分:4)
您可以value_counts
使用unstack
,感谢Nickil Maveli:
from collections import Counter
print (df.groupby("franchise")['items'].value_counts().unstack(fill_value=0))
items bird cat dog fish
franchise
franchise_A 0 1 3 0
franchise_B 1 0 0 1
crosstab
和pivot_table
的其他解决方案:
print (pd.crosstab(df["franchise"], df['items']))
items bird cat dog fish
franchise
franchise_A 0 1 3 0
franchise_B 1 0 0 1
print (df.pivot_table(index="franchise", columns='items', aggfunc='size', fill_value=0))
items bird cat dog fish
franchise
franchise_A 0 1 3 0
franchise_B 1 0 0 1
答案 1 :(得分:3)
您可以在groupby
中添加items
列,然后使用size
。
>>> df.groupby(['franchise', 'items']).size().unstack(fill_value=0)
items bird cat dog fish
franchise
franchise_A 0 1 3 0
franchise_B 1 0 0 1
(粗略)基准
%timeit df.groupby(['franchise', 'items']).size().unstack(fill_value=0)
100 loops, best of 3: 2.73 ms per loop
%timeit (df.groupby("franchise")['items'].apply(Counter).unstack(fill_value=0).astype(int))
100 loops, best of 3: 4.18 ms per loop
%timeit df.groupby('franchise')['items'].value_counts().unstack(fill_value=0)
100 loops, best of 3: 2.71 ms per loop