在Pandas DataFrame中,我可以使用DataFrame.isin()
函数将列值与另一列匹配。
例如: 假设我们有一个DataFrame:
df_A = pd.DataFrame({'col1': ['A', 'B', 'C', 'B', 'C', 'D'],
'col2': [1, 2, 3, 4, 5, 6]})
df_A
col1 col2
0 A 1
1 B 2
2 C 3
3 B 4
4 C 5
5 D 6
和另一个DataFrame:
df_B = pd.DataFrame({'col1': ['C', 'E', 'D', 'C', 'F', 'G', 'H'],
'col2': [10, 20, 30, 40, 50, 60, 70]})
df_B
col1 col2
0 C 10
1 E 20
2 D 30
3 C 40
4 F 50
5 G 60
6 H 70
我可以使用.isin()
函数将df_B
的列值与df_A
E.g:
df_B[df_B['col1'].isin(df_A['col1'])]
的产率:
col1 col2
0 C 10
2 D 30
3 C 40
PySpark DataFrame中的等效操作是什么?
df_A = pd.DataFrame({'col1': ['A', 'B', 'C', 'B', 'C', 'D'],
'col2': [1, 2, 3, 4, 5, 6]})
df_A = sqlContext.createDataFrame(df_A)
df_B = pd.DataFrame({'col1': ['C', 'E', 'D', 'C', 'F', 'G', 'H'],
'col2': [10, 20, 30, 40, 50, 60, 70]})
df_B = sqlContext.createDataFrame(df_B)
df_B[df_B['col1'].isin(df_A['col1'])]
上面的.isin()
代码给出了错误消息:
u'resolved attribute(s) col1#9007 missing from
col1#9012,col2#9013L in operator !Filter col1#9012 IN
(col1#9007);;\n!Filter col1#9012 IN (col1#9007)\n+-
LogicalRDD [col1#9012, col2#9013L]\n'
答案 0 :(得分:7)
这种操作在spark中被称为左半连接:
df_B.join(df_A, ['col1'], 'leftsemi')