我想将* .sav文件的内容转换为Python中的* .csv文件。我编写了以下代码行来访问* .sav文件中变量的详细信息。现在,我不清楚如何将访问的变量数据写入带头文件的.csv文件
import scipy.io as spio
on2file = 'ON2_2015_112m_220415.sav'
on2data = spio.readsav(on2file, python_dict=True, verbose=True)
以下是我运行代码的上述行时的结果:
IDL Save file is compressed
-> expanding to /var/folders/z4/r3844ql123jgkq1ztdr4jxrm0000gn/T/tmpVE_Iz6.sav
--------------------------------------------------
Date: Mon Feb 15 20:41:02 2016
User: zhangy1
Host: augur
--------------------------------------------------
Format: 9
Architecture: x86_64
Operating System: linux
IDL Version: 7.0
--------------------------------------------------
Successfully read 11 records of which:
- 7 are of type VARIABLE
- 1 are of type TIMESTAMP
- 1 are of type NOTICE
- 1 are of type VERSION
--------------------------------------------------
Available variables:
- saved_data [<class 'numpy.recarray'>]
- on2_grid_smooth [<type 'numpy.ndarray'>]
- d_lat [<type 'numpy.float32'>]
- on2_grid [<type 'numpy.ndarray'>]
- doy [<type 'str'>]
- year [<type 'str'>]
- d_lon [<type 'numpy.float32'>]
--------------------------------------------------
有人可以建议我如何将所有可变数据写入.csv文件吗?
我想将变量(year,doy,d_lon,d_lat,on2_grid,on2_grid_smooth)写入CSV或ASCII文件,应该按以下方式查找:
longitude, latitude, on2_grid, on2_grid_smooth # header
0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0
.....
&#34; on2_grid&#34;的形状和&#34; on2_grid_smooth&#34;变量是相同的,是(101,202)。两者都属于&#34; numpy.ndarray&#34;。
答案 0 :(得分:1)
使用您的代码提取的文件中的纬度和经度列看起来是互换的。此外,纬度范围从0到180(不是+90 0 -90))... 0是否从顶部开始。 PL。评价。
答案 1 :(得分:1)
我知道这个解决方案使用R而不是python,但它非常简单并且运行良好。
library(foreign)
write.table(read.spss("inFile.sav"), file="outFile.csv", quote = TRUE, sep = ",")
答案 2 :(得分:0)
我可以通过更改必需的输出格式来解决我的问题,这是我的代码:
import scipy.io as spio
import numpy as np
import csv
on2file = 'ON2_2016_112m_220415.sav' # i/p file
outfile = 'ON2_2016_112m_220415.csv' # o/p file
# Read i/p file
s = spio.readsav(on2file, python_dict=True, verbose=True)
# Creating Grid
#d_lat = s["d_lat"]
#d_lon = s["d_lon"]
lat = np.arange(-90,90,1.78218) # (101,)
lon = np.arange(-180,180,1.78218) # (202,)
ylat,xlon = np.meshgrid(lat,lon)
on2grid = np.asarray(s["on2_grid"])
on2gridsmooth = np.asarray(s["on2_grid_smooth"])
nrows = len(on2grid)
ncols = len(on2grid[0])
xlon_grid = xlon.reshape(nrows*ncols,1)
ylat_grid = ylat.reshape(nrows*ncols,1)
on2grid_new = on2grid.reshape(nrows*ncols,1)
on2gridsmooth_new = on2gridsmooth.reshape(nrows*ncols,1)
# Concatenation
allgriddata = np.concatenate((xlon_grid, ylat_grid, on2grid_new, on2gridsmooth_new),axis=1)
# Writing o/p file
f_handle = file(outfile,'a')
np.savetxt(f_handle,allgriddata,delimiter=",",fmt='%0.3f',header="longitude, latitude, on2_grid, on2_grid_smooth")
f_handle.close()
答案 3 :(得分:0)
我正在研究它,目前,这是我的“可怜”解决方案:
首先我导入模块savReaderWriter将.sav文件转换为结构化数组 其次我导入模块numpy将结构化数组转换为csv:
import savReaderWriter
import numpy as np
reader_np = savReaderWriter.SavReaderNp("infile.sav")
array = reader_np.to_structured_array("outfile.dat")
np.savetxt("outfile2.csv", array, delimiter=",")
reader_np.close()
问题是我在转换过程中丢失了名称属性。我会尽力解决这个问题。