我有这段代码:
var = ['a','b','c']
arr = np.array([ [1,2,3,4,5,6,7,8,9],
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
])
y = np.hsplit(arr,len(var))
newdict = {}
for idx,el in enumerate(y):
newdict[str(var[idx])] = el
print(newdict)
我正在拆分数组,以便有3个新数组,一个用于var
列表中的每个变量。
然后,我正在创建一个新的字典,以便为每个变量分配相应的数组。所以,我现在的结果是:
{'a': array([[ 1. , 2. , 3. ],
[ 0.1, 0.2, 0.3]]), 'b': array([[ 4. , 5. , 6. ],
[ 0.4, 0.5, 0.6]]), 'c': array([[ 7. , 8. , 9. ],
[ 0.7, 0.8, 0.9]])}
现在,我有一个表达式来评估:
expr = sympify('a + b +c')
f = lambdify(var, expr, 'numpy')
result = f(newdict['a'], newdict['b'], newdict['c'])
print(result)
所以,我正在使用lambdify并且我收到了正确的结果:
[[ 12. 15. 18. ]
[ 1.2 1.5 1.8]]
我的问题是如何避免明确调用f(newdict['a'], newdict['b'], newdict['c'])
?
如何在循环中进行lambdify?
答案 0 :(得分:4)
对于您的特定交换函数(a + b + c
):
f(*newdict.values())
对于非交换函数,需要指定键顺序(因为键在dict中是无序的),例如:
f(*[v for _, v in sorted(newdict.items())])
使用显式键:
f(*[newdict[k] for k in 'abc'])
使用OrderedDict
:
from collections import OrderedDict
newdict = OrderedDict()
for idx,el in enumerate(y):
newdict[str(var[idx])] = el
f(*newdict.values())
(f(*[1, 2, 3])
相当于f(1, 2, 3)
。)