如何将数据帧的日期和时间列转换为pandas的日期时间格式?

时间:2017-03-01 06:34:43

标签: python pandas datetime

我的数据框df中有一个DateTime列,如下所示:

   DateTime
3/1/2016 12:15:00 AM    
3/1/2016 12:30:00 AM    
3/1/2016 12:45:00 AM    
3/1/2016 1:00:00 AM 
3/1/2016 1:15:00 AM 
3/1/2016 1:30:00 AM 
3/1/2016 1:45:00 AM 
3/1/2016 2:00:00 AM     
3/1/2016 2:15:00 AM 

我想将其转换为以下格式,即24小时格式,如下所示:

03-01-2016 12:15:00

我该怎么做?

2 个答案:

答案 0 :(得分:3)

这应该有效:

0    01-03-2016 00:15:00
1    01-03-2016 00:30:00
2    01-03-2016 00:45:00
3    01-03-2016 01:00:00
4    01-03-2016 01:15:00
5    01-03-2016 01:30:00
6    01-03-2016 01:45:00
7    01-03-2016 02:00:00
8    01-03-2016 02:15:00
Name: DateTime, dtype: object

输出:

<star :value="{{ $data['rating'] }}" :user="{{ $data['user_id'] }}"></star>
         <!-- ^^ syntax error -->

答案 1 :(得分:2)

您只能使用to_datetime

print (df)
               DateTime
0  3/1/2016 12:15:00 AM
1  3/1/2016 12:30:00 AM
2  3/1/2016 12:45:00 AM
3   3/1/2016 1:00:00 AM
4   3/1/2016 1:15:00 AM
5   3/1/2016 1:30:00 AM
6   3/1/2016 1:45:00 AM
7   3/1/2016 2:00:00 AM
8  3/1/2016 2:15:00 PM  <-date is changed for better testing

df.DateTime = pd.to_datetime(df.DateTime)
print (df)
             DateTime
0 2016-03-01 00:15:00
1 2016-03-01 00:30:00
2 2016-03-01 00:45:00
3 2016-03-01 01:00:00
4 2016-03-01 01:15:00
5 2016-03-01 01:30:00
6 2016-03-01 01:45:00
7 2016-03-01 02:00:00
8 2016-03-01 14:15:00

编辑:

然后需要参数errors='coerce'来将有问题的值替换为NaT

print (df)
               DateTime
0  3/1/2016 28:15:00 AM <- wrong date
1  3/1/2016 12:30:00 AM
2  3/1/2016 12:45:00 AM
3   3/1/2016 1:00:00 AM
4   3/1/2016 1:15:00 AM
5   3/1/2016 1:30:00 AM
6   3/1/2016 1:45:00 AM
7   3/1/2016 2:00:00 AM
8  3/1/2016 2:15:00 PM 


df.DateTime = pd.to_datetime(df.DateTime, errors='coerce')
print (df)
             DateTime
0                 NaT
1 2016-03-01 00:30:00
2 2016-03-01 00:45:00
3 2016-03-01 01:00:00
4 2016-03-01 01:15:00
5 2016-03-01 01:30:00
6 2016-03-01 01:45:00
7 2016-03-01 02:00:00
8 2016-03-01 14:15:00

要检查有问题的值,请使用boolean indexing

print (df[pd.to_datetime(df.DateTime, errors='coerce').isnull()])
                DateTime
0  3/1/2016 28:15:00 AM