我在Tensorflow中训练LSTM-RNN上的一些音乐数据并遇到一些GPU内存分配的问题,我不明白:我遇到一个OOM,实际上似乎只是足够的VRAM仍然可用。 一些背景: 我正在使用UXntu Gnome 16.04,使用GTX1060 6GB,Intel Xeon E3-1231V3和8GB RAM。 所以现在首先是我能理解的错误消息的一部分,并且我将在最后为可能要求它提供帮助的任何人添加整个错误消息:
I tensorflow / core / common_runtime / bfc_allocator.cc:696] 8块 尺寸256总共2.0KiB I. tensorflow / core / common_runtime / bfc_allocator.cc:696] 1块大小 1280总计1.2KiB I. tensorflow / core / common_runtime / bfc_allocator.cc:696] 5块大小 44288总计216.2KiB I tensorflow / core / common_runtime / bfc_allocator.cc:696] 5块大小 56064总计273.8KiB I tensorflow / core / common_runtime / bfc_allocator.cc:696] 4块大小 154350080总计588.80MiB I. tensorflow / core / common_runtime / bfc_allocator.cc:696] 3块大小 813400064总计2.27GiB I. tensorflow / core / common_runtime / bfc_allocator.cc:696] 1块大小 1612612352总计1.50GiB I. tensorflow / core / common_runtime / bfc_allocator.cc:700]总和 使用中的块:4.35GiB I. tensorflow / core / common_runtime / bfc_allocator.cc:702]统计数据:
限制:5484118016
InUse:4670717952
MaxInUse:5484118016
NumAllocs:29
MaxAllocSize:1612612352
W tensorflow / core / common_runtime / bfc_allocator.cc:274] ********************* ___________ * __ *********** ************************* xxxxxxxxxxxxxx W tensorflow / core / common_runtime / bfc_allocator.cc:275]跑出去 内存试图分配775.72MiB。查看内存状态的日志。 w ^ tensorflow / core / framework / op_kernel.cc:993]资源耗尽:OOM 当分配张量与形状[14525,14000]
所以我可以读到最多要分配5484118016个字节, 已经在使用4670717952个字节,并且要分配另一个777.72MB = 775720000个字节。 5484118016字节 - 4670717952字节 - 775720000字节= 37680064字节根据我的计算器。 因此,在为他想要推进的新Tensor分配空间后,仍然应该有37MB的免费VRAM。这对我来说似乎也是非常合理的,因为Tensorflow可能(我猜?)不会尝试分配比现有的VRAM更多的VRAM,只是将其余的数据保留在RAM或其他东西中。
现在我想我的想法中只有一些重大错误,但如果有人能向我解释这个错误是什么,我会非常感激。对我的问题来说,明显的解决策略是让我的批次变得更小,每个批次大约1.5GB可能只是太大了。我仍然想知道实际问题是什么。
编辑:我找到了一些告诉我尝试的东西:
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config = config) as s:
仍然不起作用,但由于tensorflow文档没有任何
的解释 gpu_options.allocator_type = 'BFC'
会,我很想问你们。
为感兴趣的人添加其余的错误消息:
很抱歉有很长的复制/粘贴,但也许有人需要/希望看到它,
非常感谢你, 利昂
(gputensorflow) leon@ljksUbuntu:~/Tensorflow$ python Netzwerk_v0.5.1_gamma.py
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce GTX 1060 6GB
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:01:00.0
Total memory: 5.93GiB
Free memory: 5.40GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:01:00.0)
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (256): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (512): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (1024): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (2048): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (4096): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (8192): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (16384): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (32768): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (65536): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (131072): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (262144): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (524288): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (1048576): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (2097152): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (4194304): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (8388608): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (16777216): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (33554432): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (67108864): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (134217728): Total Chunks: 1, Chunks in use: 0 147.20MiB allocated for chunks. 147.20MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:643] Bin (268435456): Total Chunks: 1, Chunks in use: 0 628.52MiB allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:660] Bin for 775.72MiB was 256.00MiB, Chunk State:
I tensorflow/core/common_runtime/bfc_allocator.cc:666] Size: 628.52MiB | Requested Size: 0B | in_use: 0, prev: Size: 147.20MiB | Requested Size: 147.20MiB | in_use: 1, next: Size: 54.8KiB | Requested Size: 54.7KiB | in_use: 1
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208000000 of size 1280
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208000500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208000600 of size 56064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1020800e100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1020800e200 of size 44288
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208018f00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208019000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10208019100 of size 813400064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102387d1100 of size 56064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102387dec00 of size 154350080
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10241b11e00 of size 44288
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10241b1cb00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10241b1cc00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x10241b1cd00 of size 154350080
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102722d4d00 of size 56064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1027b615a00 of size 44288
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1027b620700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1027b620800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x1027b620900 of size 813400064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102abdd8900 of size 813400064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102dc590900 of size 56064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102dc59e400 of size 56064
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102dc5abf00 of size 154350080
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102e58df100 of size 154350080
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102eec12300 of size 44288
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102eec1d000 of size 44288
I tensorflow/core/common_runtime/bfc_allocator.cc:678] Chunk at 0x102eec27d00 of size 1612612352
I tensorflow/core/common_runtime/bfc_allocator.cc:687] Free at 0x1024ae4ff00 of size 659049984
I tensorflow/core/common_runtime/bfc_allocator.cc:687] Free at 0x102722e2800 of size 154350080
I tensorflow/core/common_runtime/bfc_allocator.cc:693] Summary of in-use Chunks by size:
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 8 Chunks of size 256 totalling 2.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 1280 totalling 1.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 5 Chunks of size 44288 totalling 216.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 5 Chunks of size 56064 totalling 273.8KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 4 Chunks of size 154350080 totalling 588.80MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 3 Chunks of size 813400064 totalling 2.27GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 1612612352 totalling 1.50GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:700] Sum Total of in-use chunks: 4.35GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:702] Stats:
Limit: 5484118016
InUse: 4670717952
MaxInUse: 5484118016
NumAllocs: 29
MaxAllocSize: 1612612352
W tensorflow/core/common_runtime/bfc_allocator.cc:274] *********************___________*__***************************************************xxxxxxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:275] Ran out of memory trying to allocate 775.72MiB. See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:993] Resource exhausted: OOM when allocating tensor with shape[14525,14000]
Traceback (most recent call last):
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1022, in _do_call
return fn(*args)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1004, in _run_fn
status, run_metadata)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/contextlib.py", line 66, in __exit__
next(self.gen)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 469, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[14525,14000]
[[Node: rnn/basic_lstm_cell/weights/Initializer/random_uniform = Add[T=DT_FLOAT, _class=["loc:@rnn/basic_lstm_cell/weights"], _device="/job:localhost/replica:0/task:0/gpu:0"](rnn/basic_lstm_cell/weights/Initializer/random_uniform/mul, rnn/basic_lstm_cell/weights/Initializer/random_uniform/min)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "Netzwerk_v0.5.1_gamma.py", line 171, in <module>
session.run(tf.global_variables_initializer())
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 965, in _run
feed_dict_string, options, run_metadata)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1015, in _do_run
target_list, options, run_metadata)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1035, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[14525,14000]
[[Node: rnn/basic_lstm_cell/weights/Initializer/random_uniform = Add[T=DT_FLOAT, _class=["loc:@rnn/basic_lstm_cell/weights"], _device="/job:localhost/replica:0/task:0/gpu:0"](rnn/basic_lstm_cell/weights/Initializer/random_uniform/mul, rnn/basic_lstm_cell/weights/Initializer/random_uniform/min)]]
Caused by op 'rnn/basic_lstm_cell/weights/Initializer/random_uniform', defined at:
File "Netzwerk_v0.5.1_gamma.py", line 94, in <module>
initial_state=initial_state, time_major=False) # time_major = FALSE currently
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py", line 545, in dynamic_rnn
dtype=dtype)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py", line 712, in _dynamic_rnn_loop
swap_memory=swap_memory)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2626, in while_loop
result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2459, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2409, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py", line 697, in _time_step
(output, new_state) = call_cell()
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py", line 683, in <lambda>
call_cell = lambda: cell(input_t, state)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py", line 179, in __call__
concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py", line 747, in _linear
"weights", [total_arg_size, output_size], dtype=dtype)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 988, in get_variable
custom_getter=custom_getter)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 890, in get_variable
custom_getter=custom_getter)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 348, in get_variable
validate_shape=validate_shape)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 333, in _true_getter
caching_device=caching_device, validate_shape=validate_shape)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 684, in _get_single_variable
validate_shape=validate_shape)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variables.py", line 226, in __init__
expected_shape=expected_shape)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variables.py", line 303, in _init_from_args
initial_value(), name="initial_value", dtype=dtype)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variable_scope.py", line 673, in <lambda>
shape.as_list(), dtype=dtype, partition_info=partition_info)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/init_ops.py", line 360, in __call__
dtype, seed=self.seed)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/random_ops.py", line 246, in random_uniform
return math_ops.add(rnd * (maxval - minval), minval, name=name)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/ops/gen_math_ops.py", line 73, in add
result = _op_def_lib.apply_op("Add", x=x, y=y, name=name)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 763, in apply_op
op_def=op_def)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2395, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/leon/anaconda3/envs/gputensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1264, in __init__
self._traceback = _extract_stack()
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[14525,14000]
[[Node: rnn/basic_lstm_cell/weights/Initializer/random_uniform = Add[T=DT_FLOAT, _class=["loc:@rnn/basic_lstm_cell/weights"], _device="/job:localhost/replica:0/task:0/gpu:0"](rnn/basic_lstm_cell/weights/Initializer/random_uniform/mul, rnn/basic_lstm_cell/weights/Initializer/random_uniform/min)]]
答案 0 :(得分:3)
试着看看这个
注意不要在同一个上运行评估和训练二进制文件 GPU或者你可能会耗尽内存。考虑运行 评估单独的GPU(如果可用)或暂停培训 在同一GPU上运行评估时使用二进制文件。
答案 1 :(得分:2)
我通过减少batch_size=52
来解决此问题
仅减少内存使用是为了减少batch_size。
Batch_size取决于你的gpu显卡,VRAM的大小,缓存等等。
答案 2 :(得分:1)
我遇到了同样的问题。我关闭了所有anaconda提示符窗口,并清除了所有python任务。重新打开Anaconda提示窗口并执行train.py文件。下一次对我有用。 Anaconda和Python终端占用了内存,没有为训练过程留出空间。
此外,如果上述方法不起作用,请尝试减少培训过程的批量大小。
希望这会有所帮助
答案 3 :(得分:0)
在GPU上遇到OOM时,我认为更改batch size
是首先尝试的正确选项。
对于不同的GPU,您可能需要基于GPU的不同批量大小 你有记忆。
最近我遇到了类似的问题,调整了很多不同类型的实验。
以下是question的链接(也包括一些技巧)。
但是,在减少批量大小的同时,您可能会发现训练速度变慢。因此,如果你有多个GPU,你可以使用它们。要查看您的GPU,您可以在终端上书写
nvidia-smi
它将显示有关您的gpu架的必要信息。
答案 4 :(得分:0)
我最近遇到了一个非常类似的错误,这是由于在尝试以其他过程进行训练时意外地在后台运行了一个训练过程。停止操作会立即解决此错误。
答案 5 :(得分:0)
在运行模型排列时,同样出现了OOM问题。在完成一个模型,然后定义并运行新模型之后,似乎GPU内存并未完全清除以前的模型,并且内存中正在积聚某些东西并最终导致OOM错误。
从g-eoj回答另一个问题:
keras.backend.clear_session()
应清除以前的模型。来自https://keras.io/backend/ 销毁当前的TF图并创建一个新的图。有用以避免旧模型/图层混乱。 运行并保存一个模型后,清除会话,然后运行下一个模型。
答案 6 :(得分:0)
使用Ctrl + Shift + Esc检查系统使用情况。您的内存不足。结束任务以执行不需要的任务。它对我有用。
答案 7 :(得分:0)
我发现原因真的很愚蠢。我想检查 NN 的架构,所以我在终端中加载了 tensorflow。即使 tensorflow 已加载且未使用,它仍在分配资源。我关闭了终端,OOM消失了