我有不同物体的图像(Pascal Voc),我有一个概率热图。我想通过绘制图像以及在它上面以某种方式绘制热图来可视化它。最好的方法是什么?
我正在考虑使用像这样的Alpha通道:
im_heat = np.zeros((image.shape[0],image.shape[1],4))
im_heat[:,:,:3] = image
im_heat[:,:,3] = np.rint(255/heatmap)
plt.imshow(im_heat, cmap='jet')
plt.colorbar()
如何自定义颜色条从min(热图)到max(热图)? 或者有没有更好的方法可视化概率?
答案 0 :(得分:12)
您可以使用matplotlib堆叠图像和绘图,然后选择要用于颜色栏的手柄。使用contourf
颜色条最小值和最大值将基于您的热图(或者您可以将vmin=min(heatmap)
和vmax=max(heatmap)
传递给contourf以明确此范围)。这个问题是热图将覆盖你的图像(设置透明度将使整个事物透明)。最好的选择是制作一个在接近零时透明的色彩图,如下所示,
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import Image
#2D Gaussian function
def twoD_Gaussian((x, y), xo, yo, sigma_x, sigma_y):
a = 1./(2*sigma_x**2) + 1./(2*sigma_y**2)
c = 1./(2*sigma_x**2) + 1./(2*sigma_y**2)
g = np.exp( - (a*((x-xo)**2) + c*((y-yo)**2)))
return g.ravel()
def transparent_cmap(cmap, N=255):
"Copy colormap and set alpha values"
mycmap = cmap
mycmap._init()
mycmap._lut[:,-1] = np.linspace(0, 0.8, N+4)
return mycmap
#Use base cmap to create transparent
mycmap = transparent_cmap(plt.cm.Reds)
# Import image and get x and y extents
I = Image.open('./deerback.jpg')
p = np.asarray(I).astype('float')
w, h = I.size
y, x = np.mgrid[0:h, 0:w]
#Plot image and overlay colormap
fig, ax = plt.subplots(1, 1)
ax.imshow(I)
Gauss = twoD_Gaussian((x, y), .5*x.max(), .4*y.max(), .1*x.max(), .1*y.max())
cb = ax.contourf(x, y, Gauss.reshape(x.shape[0], y.shape[1]), 15, cmap=mycmap)
plt.colorbar(cb)
plt.show()
给出,