有没有办法,我可以在PyTorch中打印模型的摘要,如下所示在Keras中的model.summary()
方法?
Model Summary:
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 1, 15, 27) 0
____________________________________________________________________________________________________
convolution2d_1 (Convolution2D) (None, 8, 15, 27) 872 input_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D) (None, 8, 7, 27) 0 convolution2d_1[0][0]
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 1512) 0 maxpooling2d_1[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 1) 1513 flatten_1[0][0]
====================================================================================================
Total params: 2,385
Trainable params: 2,385
Non-trainable params: 0
答案 0 :(得分:63)
虽然您不会像Keras的model.summary那样获得有关模型的详细信息,但只需打印模型即可让您了解所涉及的不同层及其规格。
例如:
from torchvision import models
model = models.vgg16()
print(model)
这种情况下的输出如下:
VGG (
(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU (inplace)
(4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU (inplace)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU (inplace)
(9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU (inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU (inplace)
(16): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU (inplace)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU (inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU (inplace)
(23): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU (inplace)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU (inplace)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU (inplace)
(30): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)
(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (25088 -> 4096)
(2): ReLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)
)
)
现在,正如Kashyap所述,您可以使用state_dict
方法获取不同图层的权重。但是使用这个层列表可能会提供更多方向,就是创建一个帮助函数来获得Keras之类的模型摘要!希望这有帮助!
答案 1 :(得分:49)
是的,您可以使用pytorch-summary包来获得精确的Keras表示。
from torchvision import models
from torchsummary import summary
vgg = models.vgg16()
summary(vgg, (3, 224, 224))
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 224, 224] 1,792
ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928
ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0
Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0
Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0
MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168
ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080
ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080
ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0
Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0
Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0
Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0
MaxPool2d-24 [-1, 512, 14, 14] 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808
ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14] 2,359,808
ReLU-28 [-1, 512, 14, 14] 0
Conv2d-29 [-1, 512, 14, 14] 2,359,808
ReLU-30 [-1, 512, 14, 14] 0
MaxPool2d-31 [-1, 512, 7, 7] 0
Linear-32 [-1, 4096] 102,764,544
ReLU-33 [-1, 4096] 0
Dropout-34 [-1, 4096] 0
Linear-35 [-1, 4096] 16,781,312
ReLU-36 [-1, 4096] 0
Dropout-37 [-1, 4096] 0
Linear-38 [-1, 1000] 4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------
答案 2 :(得分:12)
这将显示模型的权重和参数(但不显示输出形状)。
from torch.nn.modules.module import _addindent
import torch
import numpy as np
def torch_summarize(model, show_weights=True, show_parameters=True):
"""Summarizes torch model by showing trainable parameters and weights."""
tmpstr = model.__class__.__name__ + ' (\n'
for key, module in model._modules.items():
# if it contains layers let call it recursively to get params and weights
if type(module) in [
torch.nn.modules.container.Container,
torch.nn.modules.container.Sequential
]:
modstr = torch_summarize(module)
else:
modstr = module.__repr__()
modstr = _addindent(modstr, 2)
params = sum([np.prod(p.size()) for p in module.parameters()])
weights = tuple([tuple(p.size()) for p in module.parameters()])
tmpstr += ' (' + key + '): ' + modstr
if show_weights:
tmpstr += ', weights={}'.format(weights)
if show_parameters:
tmpstr += ', parameters={}'.format(params)
tmpstr += '\n'
tmpstr = tmpstr + ')'
return tmpstr
# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))
# # Output
# AlexNet (
# (features): Sequential (
# (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)), weights=((64, 3, 11, 11), (64,)), parameters=23296
# (1): ReLU (inplace), weights=(), parameters=0
# (2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)), weights=((192, 64, 5, 5), (192,)), parameters=307392
# (4): ReLU (inplace), weights=(), parameters=0
# (5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((384, 192, 3, 3), (384,)), parameters=663936
# (7): ReLU (inplace), weights=(), parameters=0
# (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 384, 3, 3), (256,)), parameters=884992
# (9): ReLU (inplace), weights=(), parameters=0
# (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 256, 3, 3), (256,)), parameters=590080
# (11): ReLU (inplace), weights=(), parameters=0
# (12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# ), weights=((64, 3, 11, 11), (64,), (192, 64, 5, 5), (192,), (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3, 3), (256,)), parameters=2469696
# (classifier): Sequential (
# (0): Dropout (p = 0.5), weights=(), parameters=0
# (1): Linear (9216 -> 4096), weights=((4096, 9216), (4096,)), parameters=37752832
# (2): ReLU (inplace), weights=(), parameters=0
# (3): Dropout (p = 0.5), weights=(), parameters=0
# (4): Linear (4096 -> 4096), weights=((4096, 4096), (4096,)), parameters=16781312
# (5): ReLU (inplace), weights=(), parameters=0
# (6): Linear (4096 -> 1000), weights=((1000, 4096), (1000,)), parameters=4097000
# ), weights=((4096, 9216), (4096,), (4096, 4096), (4096,), (1000, 4096), (1000,)), parameters=58631144
# )
编辑:isaykatsman有一个pytorch PR来添加model.summary()
,就像keras https://github.com/pytorch/pytorch/pull/3043/files
答案 3 :(得分:7)
您可以使用
Candidates Municipality Votes
John R. A 120
Peter F A 140
Hanna F. B 335
Andrew W. B 400
您可以指定设备
from torchsummary import summary
您可以创建一个网络,如果您使用的是MNIST数据集,则以下命令将起作用并向您显示摘要
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
答案 4 :(得分:4)
最容易记住(不像Keras那样漂亮):
print(model)
这也有效:
repr(model)
如果您只想要参数数量:
sum([param.nelement() for param in model.parameters()])
来自:Is there similar pytorch function as model.summary() as keras? (forum.PyTorch.org)
答案 5 :(得分:4)
torchinfo
(以前的 select [Movie_Search]('star')
)包产生与 Keras1 类似的输出(对于给定的输入形状):2
torchsummary
from torchinfo import summary
model = ConvNet()
batch_size = 16
summary(model, input_size=(batch_size, 1, 28, 28)
注意事项:
Torchinfo 提供的信息是对 PyTorch 中 ==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
├─Conv2d (conv1): 1-1 [5, 10, 24, 24] 260
├─Conv2d (conv2): 1-2 [5, 20, 8, 8] 5,020
├─Dropout2d (conv2_drop): 1-3 [5, 20, 8, 8] --
├─Linear (fc1): 1-4 [5, 50] 16,050
├─Linear (fc2): 1-5 [5, 10] 510
==========================================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
Total mult-adds (M): 7.69
==========================================================================================
Input size (MB): 0.05
Forward/backward pass size (MB): 0.91
Params size (MB): 0.09
Estimated Total Size (MB): 1.05
==========================================================================================
提供的信息的补充,类似于 Tensorflow 的 print(your_model)
...
与 Keras 不同,PyTorch 有一个 dynamic computational graph,它可以在多个调用中适应任何兼容的输入形状,例如任何足够大的图像尺寸(对于完全卷积网络)。
因此,它不能为每一层呈现固有的输入/输出形状集,因为它们依赖于输入,以及为什么在上述包中必须指定输入维度。 >
答案 6 :(得分:3)
为了使用火炬摘要类型:
from torchsummary import summary
如果没有,请先安装。
pip install torchsummary
然后您可以尝试一下,但是请注意由于某些原因,除非我将模型设置为cuda alexnet.cuda
,否则它将无法工作:
from torchsummary import summary
help(summary)
import torchvision.models as models
alexnet = models.alexnet(pretrained=False)
alexnet.cuda()
summary(alexnet, (3, 224, 224))
print(alexnet)
summary
必须采用输入大小,并且批次大小设置为-1,这意味着我们提供的任何批次大小。
如果我们设置summary(alexnet, (3, 224, 224), 32)
,则意味着使用bs=32
。
summary(model, input_size, batch_size=-1, device='cuda')
出
Help on function summary in module torchsummary.torchsummary:
summary(model, input_size, batch_size=-1, device='cuda')
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [32, 64, 55, 55] 23,296
ReLU-2 [32, 64, 55, 55] 0
MaxPool2d-3 [32, 64, 27, 27] 0
Conv2d-4 [32, 192, 27, 27] 307,392
ReLU-5 [32, 192, 27, 27] 0
MaxPool2d-6 [32, 192, 13, 13] 0
Conv2d-7 [32, 384, 13, 13] 663,936
ReLU-8 [32, 384, 13, 13] 0
Conv2d-9 [32, 256, 13, 13] 884,992
ReLU-10 [32, 256, 13, 13] 0
Conv2d-11 [32, 256, 13, 13] 590,080
ReLU-12 [32, 256, 13, 13] 0
MaxPool2d-13 [32, 256, 6, 6] 0
AdaptiveAvgPool2d-14 [32, 256, 6, 6] 0
Dropout-15 [32, 9216] 0
Linear-16 [32, 4096] 37,752,832
ReLU-17 [32, 4096] 0
Dropout-18 [32, 4096] 0
Linear-19 [32, 4096] 16,781,312
ReLU-20 [32, 4096] 0
Linear-21 [32, 1000] 4,097,000
================================================================
Total params: 61,100,840
Trainable params: 61,100,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 18.38
Forward/backward pass size (MB): 268.12
Params size (MB): 233.08
Estimated Total Size (MB): 519.58
----------------------------------------------------------------
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace)
(3): Dropout(p=0.5)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
答案 7 :(得分:2)
答案 8 :(得分:1)
在为模型类定义对象后,只需打印模型
class RNN(nn.Module):
def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
super().__init__()
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward():
...
model = RNN(input_dim, embedding_dim, hidden_dim, output_dim)
print(model)
答案 9 :(得分:1)
Keras喜欢使用torchsummary进行模型汇总:
from torchsummary import summary
summary(model, input_size=(3, 224, 224))
答案 10 :(得分:0)
您可以只使用x.shape
来测量张量的x
尺寸
答案 11 :(得分:0)
为了可视化和总结PyTorch
模型,也可以使用tensorboardX。
答案 12 :(得分:0)
如果将以下具有以下形状的输入放入模型中,它将如何工作? 350是batch_size,850是整数。
input_a: torch.Size([350, 6556])
input_b: torch.Size([350, 6556])
input_c: torch.Size([350])
input_d: torch.Size([20, 6556])
input_e: 850
答案 13 :(得分:0)
summary(my_model, (3, 224, 224), device = 'cpu')
将解决问题。