我想将数据加入两次,如下所示:
rdd1 = spark.createDataFrame([(1, 'a'), (2, 'b'), (3, 'c')], ['idx', 'val'])
rdd2 = spark.createDataFrame([(1, 2, 1), (1, 3, 0), (2, 3, 1)], ['key1', 'key2', 'val'])
res1 = rdd1.join(rdd2, on=[rdd1['idx'] == rdd2['key1']])
res2 = res1.join(rdd1, on=[res1['key2'] == rdd1['idx']])
res2.show()
然后我收到一些错误:
pyspark.sql.utils.AnalysisException:u'笛卡尔联接可能是 非常昂贵,默认情况下禁用。要明确启用它们,请设置spark.sql.crossJoin.enabled = true;'
但我认为这不是交叉加入
更新:
res2.explain()
== Physical Plan ==
CartesianProduct
:- *SortMergeJoin [idx#0L, idx#0L], [key1#5L, key2#6L], Inner
: :- *Sort [idx#0L ASC, idx#0L ASC], false, 0
: : +- Exchange hashpartitioning(idx#0L, idx#0L, 200)
: : +- *Filter isnotnull(idx#0L)
: : +- Scan ExistingRDD[idx#0L,val#1]
: +- *Sort [key1#5L ASC, key2#6L ASC], false, 0
: +- Exchange hashpartitioning(key1#5L, key2#6L, 200)
: +- *Filter ((isnotnull(key2#6L) && (key2#6L = key1#5L)) && isnotnull(key1#5L))
: +- Scan ExistingRDD[key1#5L,key2#6L,val#7L]
+- Scan ExistingRDD[idx#40L,val#41]
答案 0 :(得分:9)
这是因为你(defn split-at' [n v]
[(subvec v 0 n) (subvec v n)])
(defn move [m n]
(let [{:keys [a b]} m
[left right] (split-at' (- (count a) n) a)]
{:a left :b (into b right)}))
结构共享相同的谱系,这导致了一个平凡的条件:
join
res2.explain()
如果是这样你应该使用别名:
== Physical Plan ==
org.apache.spark.sql.AnalysisException: Detected cartesian product for INNER join between logical plans
Join Inner, ((idx#204L = key1#209L) && (key2#210L = idx#204L))
:- Filter isnotnull(idx#204L)
: +- LogicalRDD [idx#204L, val#205]
+- Filter ((isnotnull(key2#210L) && (key2#210L = key1#209L)) && isnotnull(key1#209L))
+- LogicalRDD [key1#209L, key2#210L, val#211L]
and
LogicalRDD [idx#235L, val#236]
Join condition is missing or trivial.
Use the CROSS JOIN syntax to allow cartesian products between these relations.;
from pyspark.sql.functions import col
rdd1 = spark.createDataFrame(...).alias('rdd1')
rdd2 = spark.createDataFrame(...).alias('rdd2')
res1 = rdd1.join(rdd2, col('rdd1.idx') == col('rdd2.key1')).alias('res1')
res1.join(rdd1, on=col('res1.key2') == col('rdd1.idx')).explain()
有关详细信息,请参阅SPARK-6459。
答案 1 :(得分:3)
在第二次加入之前保留数据帧时,我也成功了。
类似的东西:
res1 = rdd1.join(rdd2, col('rdd1.idx') == col('rdd2.key1')).persist()
res1.join(rdd1, on=col('res1.key2') == col('rdd1.idx'))
答案 2 :(得分:0)
持久化对我不起作用。
我用DataFrames上的别名克服了它
from pyspark.sql.functions import col
df1.alias("buildings").join(df2.alias("managers"), col("managers.distinguishedName") == col("buildings.manager"))