数据建模 - SVM

时间:2017-02-24 16:59:38

标签: python-3.x scikit-learn

我目前正在进行数据建模,但我收到错误,无法找到解决方案。所以我希望我能从这个平台得到一些帮助! 提前谢谢。

我的代码: -

from sklearn import cross_validation
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn import svm

X = np.array(observables) #X are features
y = np.array(df['diagnosis']) # y is label

X_train, y_train, X_test, y_test= cross_validation.train_test_split(X, y, test_size=0.2)

clf= svm.SVC()
clf.fit(X_train, y_train)
accuracy= clf.score(X_test, y_test)
print (accuracy)

但是我收到了这个错误:

  

ValueError:错误的输入形状(114,8)

1 个答案:

答案 0 :(得分:2)

好像你混淆了return values of train_test_split的顺序,使用

X_train, X_test, y_train, y_test= cross_validation.train_test_split(X, y, test_size=0.2)

而不是

X_train, y_train, X_test, y_test= cross_validation.train_test_split(X, y, test_size=0.2)