我正在处理一个数据集,其中每个条目都是'被分成许多不同大小的行, 即。
yyyymmdd hhmmss lat lon name nprt depth ubas udir cabs cdir
hs tp lp theta sp wf
20140701 000000 -76.500 208.000 'grid_point' 1 332.2 2.8 201.9 0.00 0.0
0 0.10 1.48 3.40 183.19 30.16 0.89
1 0.10 1.48 3.40 183.21 29.66 0.90
20140701 000000 -74.500 251.000 'grid_point' 1 1.0 8.4 159.7 0.00 0.0
0 0.63 4.24 28.02 105.05 32.71 0.85
1 0.60 4.21 27.68 110.42 27.04 0.95
2 0.20 5.78 52.18 43.73 17.98 0.01
3 0.06 6.55 66.86 176.86 11.04 0.10
20140701 000000 -74.500 258.000 'grid_point' 0 1.0 7.7 137.0 0.00 0.0
0 0.00 0.00 0.00 0.00 0.00 0.00
我只对以日期开头的行感兴趣,以便可以丢弃其余的行。但是,整个数据集中的附加行数会有所不同(有关示例,请参阅代码段)。
理想情况下,我想使用pandas read_csv,但如果不可行/有更简单的方法,我可以接受建议。
所以我的问题是你如何将数据读入数据框,其中行以日期开头?
由于
答案 0 :(得分:1)
您可以先使用read_csv
,然后尝试使用参数errors='coerce'
投射第一列和第二列to_datetime
- 它会将NaT
添加到dates
。因此,最后需要使用boolean indexing
过滤行和notnull
创建的掩码:
import pandas as pd
from pandas.compat import StringIO
temp=u"""yyyymmdd hhmmss lat lon name nprt depth ubas udir cabs cdir
hs tp lp theta sp wf
20140701 000000 -76.500 208.000 'grid_point' 1 332.2 2.8 201.9 0.00 0.0
0 0.10 1.48 3.40 183.19 30.16 0.89
1 0.10 1.48 3.40 183.21 29.66 0.90
20140701 000000 -74.500 251.000 'grid_point' 1 1.0 8.4 159.7 0.00 0.0
0 0.63 4.24 28.02 105.05 32.71 0.85
1 0.60 4.21 27.68 110.42 27.04 0.95
2 0.20 5.78 52.18 43.73 17.98 0.01
3 0.06 6.55 66.86 176.86 11.04 0.10
20140701 000000 -74.500 258.000 'grid_point' 0 1.0 7.7 137.0 0.00 0.0
0 0.00 0.00 0.00 0.00 0.00 0.00"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), delim_whitespace=True)
print (pd.to_datetime(df.iloc[:,0] + df.iloc[:,1], errors='coerce', format='%Y%m%d%H%M%S'))
0 NaT
1 2014-07-01
2 NaT
3 NaT
4 2014-07-01
5 NaT
6 NaT
7 NaT
8 NaT
9 2014-07-01
10 NaT
dtype: datetime64[ns]
mask = pd.to_datetime(df.iloc[:,0] +
df.iloc[:,1], errors='coerce', format='%Y%m%d%H%M%S')
.notnull()
print (mask)
print (mask)
0 False
1 True
2 False
3 False
4 True
5 False
6 False
7 False
8 False
9 True
10 False
dtype: bool
print (df[mask])
yyyymmdd hhmmss lat lon name nprt depth ubas udir \
1 20140701 000000 -76.500 208.000 'grid_point' 1 332.2 2.8 201.9
4 20140701 000000 -74.500 251.000 'grid_point' 1 1.0 8.4 159.7
9 20140701 000000 -74.500 258.000 'grid_point' 0 1.0 7.7 137.0
cabs cdir
1 0.0 0.0
4 0.0 0.0