Java中下面的scala代码段的确切翻译是什么?
import org.apache.spark.sql.functions.udf
def upper(s:String) : String ={
s.toUpperCase
}
val toUpper = udf(upper _)
peopleDS.select(peopleDS(“name”),toUpper(peopledS(“name”))).show
请填写以下缺失的陈述例如。
import org.apache.spark.sql.api.java.UDF1;
UDF1 toUpper= new UDF1<String, String>() {
public String call(final String str) throws Exception {
return str.toUpperCase(); }};
peopleDS.select(peopleDS.col("name"), /*how to run toUpper("name"))?????*/.show();
注意:注册udf然后使用selectExpr调用对我有效,但我需要上面显示的类似内容。
工作示例:
sqlContext.udf().register("toUpper",(String s)->s.toUpperCase(), DataTypes.StringType);
peopleDF.selectExpr("toUpper(name)","name").show();
答案 0 :(得分:4)
在java中调用UDF而不注册是不可能的。请检查https://bl.ocks.org/diggetybo/raw/6d35e5ecd17992650d0a23896e649b25/。以下是您的UDF。
private static UDF1 toUpper = new UDF1<String, String>() {
public String call(final String str) throws Exception {
return str.toUpperCase();
}
};
注册UDF,您可以使用callUDF
功能。
import static org.apache.spark.sql.functions.callUDF;
import static org.apache.spark.sql.functions.col;
sqlContext.udf().register("toUpper", toUpper, DataTypes.StringType);
peopleDF.select(col("name"),callUDF("toUpper", col("name"))).show();
答案 1 :(得分:0)
Input csv:
+-------+--------+------+
| name| address|salary|
+-------+--------+------+
| Arun| Indore| 1|
|Shubham| Indore| 2|
| Mukesh|Hariyana| 3|
| Arun| Bhopal| 4|
|Shubham|Jabalpur| 5|
| Mukesh| Rohtak| 6|
+-------+--------+------+
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.functions;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("test").setMaster("local");
SparkSession sparkSession = new SparkSession(new SparkContext(sparkConf));
Dataset<Row> dataset = sparkSession.read().option("header", "true")
.csv("C:\\Users\\Desktop\\Spark\\user.csv");
/**Create udf*/
UDF1<String, String> toLower = new UDF1<String, String>() {
@Override
public String call(String str) throws Exception {
return str.toLowerCase();
}
};
/**Register udf*/
sparkSession.udf().register("toLower", toLower, DataTypes.StringType);
/**call udf using functions.callUDF method*/
dataset.select(dataset.col("name"),dataset.col("salary"),
functions.callUDF("toLower",dataset.col("address")).alias("address")).show();
}
Output :
+-------+------+--------+
| name|salary| address|
+-------+------+--------+
| Arun| 1| indore|
|Shubham| 2| indore|
| Mukesh| 3|hariyana|
| Arun| 4| bhopal|
|Shubham| 5|jabalpur|
| Mukesh| 6| rohtak|
+-------+------+--------+