我有一个名为ES_15M_Summary的DataFrame,系列/ beta位于标题为ES_15M_Summary ['Rolling_OLS_Coefficient']的列上,如下所示:
如果上面的图片列('Rolling_OLS_Coefficient')是一个大于.08的值,我想要一个标题为'Long'的新列为二进制'Y'。如果另一列中的值小于.08,我希望该值为“NaN”或“N”(可以正常工作)。
所以我正在写一个for循环来运行列。首先,我创建了一个名为“Long”的新列并将其设置为NaN:
ES_15M_Summary['Long'] = np.nan
然后我做了以下For Loop:
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary['Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary['Long'] = 'Y'
else:
ES_15M_Summary['Long'] = 'NaN'
我收到错误:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
...引用上面显示的if语句行(如果...> .08 :)。我不知道为什么我得到这个错误或者for循环有什么问题。任何帮助表示赞赏。
答案 0 :(得分:2)
我认为更好的是使用numpy.where
:
mask = ES_15M_Summary['Rolling_OLS_Coefficient'] > .08
ES_15M_Summary['Long'] = np.where(mask, 'Y', 'N')
样品:
ES_15M_Summary = pd.DataFrame({'Rolling_OLS_Coefficient':[0.07,0.01,0.09]})
print (ES_15M_Summary)
Rolling_OLS_Coefficient
0 0.07
1 0.01
2 0.09
mask = ES_15M_Summary['Rolling_OLS_Coefficient'] > .08
ES_15M_Summary['Long'] = np.where(mask, 'Y', 'N')
print (ES_15M_Summary)
Rolling_OLS_Coefficient Long
0 0.07 N
1 0.01 N
2 0.09 Y
循环,非常缓慢的解决方案:
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary.loc[index, 'Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary.loc[index,'Long'] = 'Y'
else:
ES_15M_Summary.loc[index,'Long'] = 'N'
print (ES_15M_Summary)
Rolling_OLS_Coefficient Long
0 0.07 N
1 0.01 N
2 0.09 Y
<强>计时强>:
#3000 rows
ES_15M_Summary = pd.DataFrame({'Rolling_OLS_Coefficient':[0.07,0.01,0.09] * 1000})
#print (ES_15M_Summary)
def loop(df):
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary.loc[index, 'Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary.loc[index,'Long'] = 'Y'
else:
ES_15M_Summary.loc[index,'Long'] = 'N'
return (ES_15M_Summary)
print (loop(ES_15M_Summary))
In [51]: %timeit (loop(ES_15M_Summary))
1 loop, best of 3: 2.38 s per loop
In [52]: %timeit ES_15M_Summary['Long'] = np.where(ES_15M_Summary['Rolling_OLS_Coefficient'] > .08, 'Y', 'N')
1000 loops, best of 3: 555 µs per loop