我正在尝试更改Karpathy的代码,以便它与softmax函数一起使用,以便我可以将它用于具有2个以上操作的游戏。但是,我无法让它发挥作用。有人可以帮我指出正确的方向吗?谢谢。以下是我的尝试。
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 100 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.9 # discount factor for reward
decay_rate = 0.9 # decay factor for RMSProp leaky sum of grad^2
resume = False # resume from previous checkpoint?
render = False
num_action = 2
# model initialization
D = 6 # input dimensionality: 80x80 grid
if resume:
model = pickle.load(open('save.p', 'rb'))
else:
model = {}
model['W1'] = np.random.randn(H,D) / np.sqrt(D) # "Xavier" initialization
model['W2'] = np.random.randn(num_action, H) / np.sqrt(H)
grad_buffer = { k : np.zeros_like(v) for k,v in model.iteritems() } # update buffers that add up gradients over a batch
rmsprop_cache = { k : np.zeros_like(v) for k,v in model.iteritems() } # rmsprop memory
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
def softmax(w, t = 1.0):
e = np.exp(np.array(w) / t)
dist = e / np.sum(e)
return dist
def prepro(I):
""" prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """
I = I[35:195] # crop
I = I[::2,::2,0] # downsample by factor of 2
I[I == 144] = 0 # erase background (background type 1)
I[I == 109] = 0 # erase background (background type 2)
I[I != 0] = 1 # everything else (paddles, ball) just set to 1
return I.astype(np.float).ravel()
def discount_rewards(r):
""" take 1D float array of rewards and compute discounted reward """
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!)
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def policy_forward(x):
h = np.dot(model['W1'], x)
h[h<0] = 0 # ReLU nonlinearity
logp = np.dot(model['W2'], h)
p = softmax(logp)
return p, h # return probability of taking action 2, and hidden state
def policy_backward(eph, epdlogp):
""" backward pass. (eph is array of intermediate hidden states) """
# print eph.shape
# print epdlogp.shape
# print model['W2'].shape
# dW2 = np.dot(eph.T, epdlogp).ravel()
# dh = np.outer(epdlogp, model['W2'])
# dh[eph <= 0] = 0 # backpro prelu
# dW1 = np.dot(dh.T, epx)
# return {'W1':dW1, 'W2':dW2}
dW2 = np.dot(eph.T, epdlogp).T
# print dW2.shape
dh = np.dot(epdlogp, model['W2'])
# print dh.shape
dh[eph <= 0] = 0 # backpro prelu
dW1 = np.dot(dh.T, epx)
return {'W1':dW1, 'W2':dW2}
env = gym.make("Acrobot-v1")
observation = env.reset()
prev_x = None # used in computing the difference frame
xs,hs,dlogps,drs = [],[],[],[]
running_reward = None
reward_sum = 0
episode_number = 0
while True:
if render: env.render()
# preprocess the observation, set input to network to be difference image
cur_x = observation
x = cur_x - prev_x if prev_x is not None else np.zeros(D)
prev_x = cur_x
# forward the policy network and sample an action from the returned probability
aprob, h = policy_forward(x)
action = np.argmax(aprob)
if action == 1:
action = 2
# action = 2 if np.random.uniform() > aprob[1] else 0
# print aprob
# action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state
# if action == 0:
# y = [1,0,0]
# elif action == 1:
# y = [0,1,0]
# else:
# y = [0,0,1]
y = [1,0] if action == 0 else [0,1] # a "fake label"
dlogps.append(aprob-y) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused)
# step the environment and get new measurements
observation, reward, done, info = env.step(action)
reward_sum += reward
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
if done: # an episode finished
episode_number += 1
# stack together all inputs, hidden states, action gradients, and rewards for this episode
epx = np.vstack(xs)
eph = np.vstack(hs)
epdlogp = np.vstack(dlogps)
epr = np.vstack(drs)
xs,hs,dlogps,drs = [],[],[],[] # reset array memory
# compute the discounted reward backwards through time
discounted_epr = discount_rewards(epr)
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
grad = policy_backward(eph, epdlogp)
for k in model: grad_buffer[k] += grad[k] # accumulate grad over batch
# perform rmsprop parameter update every batch_size episodes
if episode_number % batch_size == 0:
for k,v in model.iteritems():
g = grad_buffer[k] # gradient
rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
# boring book-keeping
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
print 'resetting env. episode reward total was %f. running mean: %f' % (reward_sum, running_reward)
if episode_number % 100 == 0: pickle.dump(model, open('save.p', 'wb'))
reward_sum = 0
observation = env.reset() # reset env
prev_x = None
调试时,此代码会遇到“nan”问题,我无法弄清楚如何修复。
答案 0 :(得分:2)
我认为您在评论中提到的NaN
问题是由您的Softmax功能引起的。
Softmax计算指数函数exp(x)
,对于中等的x值,它可以轻松超过单精度浮点数或双精度浮点数的范围。这会导致exp
返回NaN
。
<强>解决方案强>
Softmax的数学形式是:
s[i] = exp(x[i]) / (exp(x[0]) + exp(x[1]) + .. + exp(x[n-1]))
我们可以将此表达式的分子和分母除以任意值,比如exp(a)
,而不会影响结果。
s[i] = (exp(x[i])/exp(a)) / ((exp(x[0]) + exp(x[1]) + .. + exp(x[n-1])/exp(a)))
s[i] = exp(x[i]-a) / (exp(x[0]-a) + exp(x[1]-a) + .. + exp(x[n-1]-a))
如果我们让a = max(x)
所有指数都为零或负数,那么对exp的调用将不会返回NaN。
我不使用Python或numpy,但我想你可以定义 softmax 之类的东西:
def softmax(w):
a = np.max(w)
e = np.exp(np.array(w) - a)
dist = e / np.sum(e)
return dist