我一直在尝试设置运行TensorFlow教程中提到的Boston Housing示例的分布式集群,但到目前为止,我有点迷失了。谷歌搜索或搜索教程没有帮助。
"""DNNRegressor with custom input_fn for Housing dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import json
import os
import pandas as pd
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
"dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
"age", "dis", "tax", "ptratio"]
LABEL = "medv"
def input_fn(data_set):
feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
labels = tf.constant(data_set[LABEL].values)
return feature_cols, labels
def main(unused_argv):
# Load datasets
training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
skiprows=1, names=COLUMNS)
test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
skiprows=1, names=COLUMNS)
# Set of 6 examples for which to predict median house values
prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
skiprows=1, names=COLUMNS)
# Feature cols
feature_cols = [tf.contrib.layers.real_valued_column(k)
for k in FEATURES]
cluster = {'ps': ['10.134.96.44:2222', '10.134.96.184:2222'],
'worker': ['10.134.96.37:2222', '10.134.96.145:2222']}
os.environ['TF_CONFIG'] = json.dumps(
{'cluster': cluster,
'task': {'type': 'worker', 'index': 0}})
# Build 2 layer fully connected DNN with 10, 10 units respectively.
regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
hidden_units=[10, 10],
model_dir="/tmp/boston_model",
config=tf.contrib.learn.RunConfig())
# Fit
regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)
# Score accuracy
ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))
# Print out predictions
y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
# .predict() returns an iterator; convert to a list and print predictions
predictions = list(itertools.islice(y, 6))
print("Predictions: {}".format(str(predictions)))
if __name__ == "__main__":
tf.app.run()
我不确定我是否在这里正确设置了TF_CONFIG。我使用了4台机器的集群 - 两个PS和两个工人,但我没有设置环境'在群集中也没有' master'机器。我第一次开始运行两个PS,然后当我运行两个工作程序时,它就被卡在了#34; INFO:tensorflow:Create CheckpointSaverHook。"我在这里做错了吗?
感谢您的帮助。
答案 0 :(得分:1)
我遇到了完全相同的问题。问题是grpc服务器实际上从未实际启动过。我做了同样的假设 - tf.learn启动了grpc服务器 - 但事实并非如此。您可以从python脚本中启动服务器。然后,取决于流程是否正在运行' ps'或者'工人'任务,您可以致电server.join()
或运行模型的其余代码:
job = sys.argv[1]
task = int(sys.argv[2])
cluster = {'worker': ['localhost:2223'],
'ps': ['localhost:2222']}
os.environ['TF_CONFIG'] = json.dumps({'cluster': cluster,
'task': {'type': job, 'index': task}})
# Create the server
server = tf.train.Server(cluster,
job_name=job,
task_index=task)
if job == "ps":
server.join()
elif job == "worker":
# Load input
# estimator.fit()
有关详情,请查看: how to run tensorflow distributed mnist example
并且
https://www.tensorflow.org/deploy/distributed#putting-it-all-together-example-trainer-program