SyntaxError:标识符Python 3.5.2中的无效字符& tensorflow

时间:2017-02-19 14:21:07

标签: python error-handling

我现在开始学习tensorflow ..跟随一个youtube vid就此并遵循程序但得到一个SyntaxError:标识符-line 53中的无效字符sess.run(tf.global_variables_initializer()).. 。请参见下面的程序。感谢任何帮助:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

#height x width
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
    hidden_1_layer = {'weights' :tf.Variable(tf.random_normal([784, n_nodes_hl1])),'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}

    hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}

    output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                      'biases': tf.Variable(tf.random_normal([n_classes]))}

    # (input_data * weights) + biases

    l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.relu(l1)

    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.relu(l2)

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
    l3 = tf.nn.relu(l3)

    output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']

    return output

def train_neural_network(x):
    prediction = neural_network_model(x)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
    optimizer = tf.train.AdamOptimizer().minimize(cost)

    hm_epochs = 10

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for epoch in range(hm_epochs):
            epoch_loss = 0
            for _ in range(int(mnist.train.num_examples/batch_size)):
                epoch_x, epoch_y = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
                epoch_loss += c
            print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)

        correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct,'float'))
        print('Accuracy:',accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))


    train_neural_network(x)

3 个答案:

答案 0 :(得分:2)

我前段时间遇到了同样的错误。请不要复制粘贴来自不同编辑器或网页的代码。如果你在编辑器中输入它,它就不会给你那个错误。

答案 1 :(得分:0)

这是因为复制代码并粘贴它还导致复制空格。删除空格并在标识符代码周围手动添加空格可以正常工作。

答案 2 :(得分:0)

您的代码包含不可打印的无效字符。您可以通过手动重新键入来修复它。

# copied and pasted from your code
s1 = 'sess.run(tf.global_variables_initializer())'

# manually typed
s2 = 'sess.run(tf.global_variables_initializer())'

这两个字符串看起来相同,但是却不相同。使用repr,我们可以看到不同之处:

print(repr(s1))                                                        
'sess.run(tf.global_variables_initializer())\ufeff'

print(repr(s2))                                                        
'sess.run(tf.global_variables_initializer())'

s1中的多余字符是ZERO WIDTH NO-BREAK SPACE。不知道那是哪里来的。