我需要编写一个SQL查询
这是我的表格
x <- read.csv("C:/Users/Admin/Downloads/Set 1-1.csv",sep=",",dec=".")
y <- read.csv("C:/Users/Admin/Downloads/Set 1-2 - Copy.csv",sep=",",dec=".")
y$score <- 1
我尝试加入
library("sqldf")
select clientid,emailmessageid,null cnttrn,idatediff,null score from x
union all select clientid,emailmessageid,cnttrn,idatediff,score from y
但我收到以下错误:
从x
选择clientid,emailmessageid,null cnttrn,idatediff,null得分错误:“select clientid”中的意外符号
联盟所有选择 clientid,emailmessageid,cnttrn,idatediff,y得分
错误: “all all”中的意外符号
请帮助纠正它。谢谢。
dput(x)的
ClientID EmailMessageId MinDate MaxDate IdSlip WwsCreatedDate ProductArticle ProductGroupName MainProductGroupName CategoryGroupName QtytItems SumAmount iDateDiff
3E34C0C9FC05975CC0F01D7A3DEE73D022538FA04B17A0316178E090C04F84A8 894DB62F7B7A6ED2 31.08.2016 31.08.2016 4A19280A1164CF3F4A701EF9AE97A1F1084B611000B94C02 24.09.2015 item1 item2 item3 item4 1 580.0 -342
3E34C0C9FC05975CC0F01D7A3DEE73D022538FA04B17A0316178E090C04F84A8 894DB62F7B7A6ED2 31.08.2016 31.08.2016 4A19280A1164CF3F4A701EF9AE97A1F1084B611000B94C02 24.09.2015 item1 item2 item3 item4 1 3190.0 -342
dput(y)的
ClientID EmailMessageId CntTrn iDateDiff score
86139F31664463A8B7592B6887B731A9FC2C3489BB1756A5BF334CFDEA4EF604 9EDCC1391C208BA0 1 4 1
BD483D69913E3EBFE5FBA87A1FFAB7DCD061055FFB4342C2F27AC01F36833254 EF72D53990BC4805 1 5 1
0B3B2F06C3033B3AFD83BA59B405BCC79BC69801FD3B69931F117B8D754A80EB 9EDCC1391C208BA0 1 3 1
答案 0 :(得分:3)
这对我来说没有错误。唯一的区别是查询格式化。结果是否正确?
library(sqldf)
y <- read.table(text = "ClientID EmailMessageId CntTrn iDateDiff score
86139F31664463A8B7592B6887B731A9FC2C3489BB1756A5BF334CFDEA4EF604 9EDCC1391C208BA0 1 4 1
BD483D69913E3EBFE5FBA87A1FFAB7DCD061055FFB4342C2F27AC01F36833254 EF72D53990BC4805 1 5 1
0B3B2F06C3033B3AFD83BA59B405BCC79BC69801FD3B69931F117B8D754A80EB 9EDCC1391C208BA0 1 3 1", header = TRUE)
x <- read.table(header = TRUE, text = "ClientID EmailMessageId MinDate MaxDate IdSlip WwsCreatedDate ProductArticle ProductGroupName MainProductGroupName CategoryGroupName QtytItems SumAmount iDateDiff
3E34C0C9FC05975CC0F01D7A3DEE73D022538FA04B17A0316178E090C04F84A8 894DB62F7B7A6ED2 31.08.2016 31.08.2016 4A19280A1164CF3F4A701EF9AE97A1F1084B611000B94C02 24.09.2015 item1 item2 item3 item4 1 580.0 -342
3E34C0C9FC05975CC0F01D7A3DEE73D022538FA04B17A0316178E090C04F84A8 894DB62F7B7A6ED2 31.08.2016 31.08.2016 4A19280A1164CF3F4A701EF9AE97A1F1084B611000B94C02 24.09.2015 item1 item2 item3 item4 1 3190.0 -342")
sqldf("
SELECT
ClientId,
EmailMessageId,
null CntTrn,
iDateDiff,
null Score
FROM x
UNION ALL
SELECT
ClientId,
EmailMessageId,
CntTrn,
iDateDiff,
Score
FROM y")