使用自定义数据生成器为Keras模型拟合大量数据

时间:2017-02-17 20:15:25

标签: python tensorflow computer-vision deep-learning keras

我试图让我的Keras模型适合大量数据。

为此,我使用自定义数据生成器和model.fit_generator函数。

但是,如果我能正确地做到这一点,我似乎无法理解。

以下是我所拥有的:

from os.path import join

import cv2
import numpy as np
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau

# The function returns a list of image names from folder
from data.preprocessing import get_list_of_images


class VGG19(object):
    def __init__(self, weights_path=None, train_folder='data/train', validation_folder='data/val'):
        self.weights_path = weights_path
        self.model = self._init_model()

        if weights_path:
            self.model.load_weights(weights_path)
        else:
            self.datagen = self._init_datagen()
            self.train_folder = train_folder
            self.validation_folder = validation_folder
            self.model.compile(
                loss='binary_crossentropy',
                optimizer='adam',
                metrics=['accuracy']
            )

    def fit(self, batch_size=32, nb_epoch=10):
        self.model.fit_generator(
            self._generate_data_from_folder(self.train_folder), 32,
            nb_epoch,
            verbose=1,
            callbacks=[
                TensorBoard(log_dir='./logs', write_images=True),
                ModelCheckpoint(filepath='weights.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss'),
                ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=0.001)
            ],
            validation_data=self._generate_data_from_folder(self.validation_folder),
            nb_val_samples=32
        )

    def predict(self, X, batch_size=32, verbose=1):
        return self.model.predict(X, batch_size=batch_size, verbose=verbose)

    def predict_proba(self, X, batch_size=32, verbose=1):
        return self.model.predict_proba(X, batch_size=batch_size, verbose=verbose)

    def _init_model(self):
        model = Sequential()
        # model definition goes here...
        return model

    def _init_datagen(self):
        return ImageDataGenerator(
            featurewise_center=True,
            samplewise_center=False,
            featurewise_std_normalization=True,
            samplewise_std_normalization=False,
            zca_whitening=False,
            rotation_range=20,
            width_shift_range=0.2,
            height_shift_range=0.2,
            horizontal_flip=True,
            vertical_flip=True
        )

    def _generate_data_from_folder(self, folder_path):
        while 1:
            images = get_list_of_images(folder_path)

            for image_path in images:
                x = cv2.imread(join(folder_path, image_path))
                y = 0 if image_path.split('.')[0] == 'dog' else 1

                yield (x, y)

我的数据集由名称如下的图像组成:

  • cat.[number].jpg,即:cat.124.jpg

  • dog.[number].jpg,即:dog.64.jpg

所以,基本上,我试图训练模型来执行二元猫狗分类。

我的_generate_data_from_folder功能是否正确实现了小批量优化?

如何将ImageDataGenerator的用法添加到我的_generate_data_from_folder函数(来自_init_datagen函数)?

1 个答案:

答案 0 :(得分:2)

好的,这是我工作的项目最终版本的github链接:

https://github.com/yakovenkodenis/dogs-vs-cats-kaggle

希望,它有助于某人