我正在进行延续,我遇到了两种不同的方法来构建延续类型:
newtype C r a = C {runC :: (a -> r) -> r}
exampleFunction :: String -> C Bool String
exampleFunction s = C $ \t -> if length s > 10 then t s else False
continuationFunction :: String -> Bool
continuationFunction s = True
main = do
let suspendedFunc = exampleFunction "testing"
let completedFunc = runC suspendedFunc $ continuationFunction
与Poor Mans Concurrency中采用的方法相比:
type C r a = (a -> r) -> r
exampleFunction :: String -> C Bool String
exampleFunction s = \t -> if length s > 10 then t s else False
...
我理解后一种方法不使用显式数据构造函数。
当我尝试在monad的普通类型上使用它时会影响吗?如:
data Hole = Hole1 Int | Hole2 String
type C r m a = (a -> m r) -> m r
exampleFunction :: String -> C Bool Maybe Hole
exampleFunction s = \t -> do
x <- t (Hole1 11)
y <- t (Hole2 "test")
...
continuationFunction :: Hole -> Bool
continuationFunction (Hole1 x) = False
continuationFunction (Hole2 y) = True
答案 0 :(得分:3)
差异是type
和newtype
之间的通常差异。
type
同义词只是现有类型的新名称。无法部分应用type
个同义词,因为编译器会在类型检查期间扩展定义。例如,即使使用TypeSynonymInstances
:
type TypeCont r a = (a -> r) -> r
instance Monad (TypeCont r) where -- "The type synonym ‘TypeCont’ should have 2 arguments, but has been given 1"
return x = ($ x)
k >>= f = \q -> k (\x -> (f x) q)
newtype
虽然在操作上等同于它们包装的类型,但它们是类型系统中的独立实体。这意味着可以部分应用newtype
s 。
newtype NewtypeCont r a = Cont { runCont :: (a -> r) -> r }
instance Monad (NewtypeCont r) where
return x = Cont ($ x)
Cont k >>= f = Cont $ \q -> k (\x -> runCont (f x) q)