我有两台没有CUDA的电脑:一台在Microsoft Windows上运行,另一台在Linux上运行(Ubuntu 14.04 64bit / Linux 3.13.0-100-generic))
我可以在Microsoft Windows上使用没有CUDA的TensorFlow而没有任何问题:TensorFlow使用CPU。但是,如果我在Linux机器上运行python import tensorflow as tf
,那么由于未安装CUDA,TensorFlow无法导入:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/tensorflow/__init__.py", line 24, in <module>
from tensorflow.python import *
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/__init__.py", line 72, in <module>
raise ImportError(msg)
ImportError: Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/__init__.py", line 61, in <module>
from tensorflow.python import pywrap_tensorflow
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 28, in <module>
_pywrap_tensorflow = swig_import_helper()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow', fp, pathname, description)
ImportError: libcudart.so.8.0: cannot open shared object file: No such file or directory
Failed to load the native TensorFlow runtime.
See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md#import_error
for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
如何在Linux上使用没有CUDA的TensorFlow?
我使用tensorflow-gpu==1.0.0
。
我知道device_count
中的参数tensorflow.ConfigProto
,它允许禁用GPU,例如:
import tensorflow as tf
a = tf.constant(1, name = 'a')
b = tf.constant(3, name = 'b')
c = tf.constant(9, name = 'c')
d = tf.add(a, b, name='d')
e = tf.add(d, c, name='e')
config = tf.ConfigProto(device_count={'CPU': 1, 'GPU': 0})
sess = tf.Session(config=config)
print(sess.run([d, e]))
但由于import tensorflow as tf
是问题,因此无效。
我也知道如何安装CUDA 8:
# Install Nvidia drivers, CUDA and CUDA toolkit, following some instructions from http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64-deb
sudo dpkg -i cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64-deb
sudo apt-get update
sudo apt-get install cuda
但更愿意在这两台机器上避免它。
答案 0 :(得分:5)
如果使用--config=cuda
构建二进制文件(与tensorflow-gpu
一样),那么您的计算机必须具有GPU驱动程序。您可以在机器上安装GPU驱动程序,即使机器没有GPU,这是常见的实用解决方案。
会发生--config=cuda
在代码中设置2017-02-16 17:15:08: I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcurand.8.0.dylib locally
宏,这会在运行时更改行为。特别是它会导致dso_loader运行,您可以通过以下行打印
for host in server1 server2 server3 ...; do
ssh -n "$host" 'grep <something> /some/log/file'
done >file.txt
Google的一个流行方法是部署一个&#34; fat&#34;二进制 - 即捆绑所有可能的硬件加速器的驱动程序和客户端代码的二进制文件,因为这简化了测试和部署。
在开源版本中,驱动程序和客户端代码是分开的,但这种模式仍然存在 - 支持GPU的二进制文件预计可以使用GPU驱动程序。