我想创建一个dplyr::bind_rows
的加强版本,当我们尝试合并的dfs中存在因子列时,它会避免Unequal factor levels: coercing to character
警告(也可能包含非因子列) )。这是一个例子:
df1 <- dplyr::data_frame(age = 1:3, gender = factor(c("male", "female", "female")), district = factor(c("north", "south", "west")))
df2 <- dplyr::data_frame(age = 4:6, gender = factor(c("male", "neutral", "neutral")), district = factor(c("central", "north", "east")))
然后bind_rows_with_factor_columns(df1, df2)
返回(没有警告):
dplyr::data_frame(
age = 1:6,
gender = factor(c("male", "female", "female", "male", "neutral", "neutral")),
district = factor(c("north", "south", "west", "central", "north", "east"))
)
这是我到目前为止所拥有的:
bind_rows_with_factor_columns <- function(...) {
factor_columns <- purrr::map(..., function(df) {
colnames(dplyr::select_if(df, is.factor))
})
if (length(unique(factor_columns)) > 1) {
stop("All factor columns in dfs must have the same column names")
}
df_list <- purrr::map(..., function (df) {
purrr::map_if(df, is.factor, as.character) %>% dplyr::as_data_frame()
})
dplyr::bind_rows(df_list) %>%
purrr::map_at(factor_columns[[1]], as.factor) %>%
dplyr::as_data_frame()
}
我想知道是否有人对如何合并forcats
包以避免必须将因素强加给角色,或者是否有人提出任何建议以提高其性能同时保持相同的功能(我想坚持tidyverse
语法)。谢谢!
答案 0 :(得分:1)
根据朋友的一个很好的解决方案来回答我自己的问题:
bind_rows_with_factor_columns <- function(...) {
purrr::pmap_df(list(...), function(...) {
cols_to_bind <- list(...)
if (all(purrr::map_lgl(cols_to_bind, is.factor))) {
forcats::fct_c(cols_to_bind)
} else {
unlist(cols_to_bind)
}
})
}
答案 1 :(得分:1)
使用dplyr::bind_rows
抑制警告,然后将所有新字符列转换回因子可能更简单。这样做的好处是可以通过列名绑定data.frames
(允许列的不同排序和包含额外列),并且当因子变量有时记录为字符时仍然有效。
library(tidyverse)
bind_rows_keep_factors <- function(...) {
## Identify all factors
factors <- unique(unlist(
map(list(...), ~ select_if(..., is.factor) %>% names())
))
## Bind dataframes, convert characters back to factors
suppressWarnings(bind_rows(...)) %>%
mutate_at(vars(one_of(factors)), factor)
}
dat1 <- tibble(
id = 1:2,
fruit = factor(c("banana", "apple"))
)
dat2 <- tibble(
id = 3:4,
fruit = c("pear", "banana"),
taste = c("Mmmm", "yum")
)
bind_rows_keep_factors(dat1, dat2)
# A tibble: 4 x 3
id fruit taste
<int> <fct> <chr>
1 1 banana NA
2 2 apple NA
3 3 pear Mmmm
4 4 banana yum
当然,因子级别的排序被中断(恢复为字母顺序)。