Python在不同列表中共同出现两个项目

时间:2017-02-16 11:12:53

标签: python list dictionary count find-occurrences

我有一个列表,如:

{ ['cat', 'fish']: 3, ['cat', 'dog']: 1,['cat','bird']:1
 ['fish','dog'] : 1, ['fish','bird']:2} 

我想计算每个名字在整个列表中提到的次数和输出的次数:

from collections import Counter
from collections import defaultdict

co_occurences = defaultdict(Counter)
for tags in names:
    for key in tags:
        co_occurences[key].update(tags)

print co_occurences

我试过了:

$oldFigure = 14;
$newFigure = 12.50;

$percentChange = (1 - $oldFigure / $newFigure) * 100;

echo $percentChange;

但它并不计算主列表中的co =出现次数。

5 个答案:

答案 0 :(得分:3)

在这里。我使用<=来测试一个集合是否是另一个集合的子集(集合没有顺序,每个元素只出现一次)。

import itertools
from pprint import pprint

names = [['cat', 'fish'],
         ['cat'],
         ['fish', 'dog', 'cat'],
         ['cat', 'bird', 'fish'],
         ['fish', 'bird']]

# Flatten the list and make all names unique
unique_names = set(itertools.chain.from_iterable(names))

# Get all combinations of pairs
all_pairs = list(itertools.combinations(unique_names, 2))

# Create the dictionary
result = {pair: len([x for x in names if set(pair) <= set(x)]) for pair in all_pairs}

pprint(result)

这是输出

{('bird', 'cat'): 1,
 ('bird', 'dog'): 0,
 ('bird', 'fish'): 2,
 ('dog', 'cat'): 1,
 ('fish', 'cat'): 3,
 ('fish', 'dog'): 1}

我建议将其放在专用函数len([x for x in names if set(pair) <= set(x)])中以获取字典的值。

答案 1 :(得分:2)

您可以使用itertools.combinationsitertools.chain作为:

来使用所需的结果
>>> from itertools import combinations, chain

>>> names =  [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat'],
...  ['cat', 'bird', 'fish'], ['fish', 'bird']]
>>> uniques = set(chain(*names))
>>> {x: sum(1 for n in names if all(i in n for i in x))  for x in combinations(uniques, 2)}
{('fish', 'dog'): 1, ('dog', 'cat'): 1, ('bird', 'fish'): 2, ('fish', 'cat'): 3, ('bird', 'dog'): 0, ('bird', 'cat'): 1}

答案 2 :(得分:2)

您可以在python中使用按位AND,并通过将列表列表转换为集合列表来比较它们

def listOccurences(item, names):
    # item is the list that you want to check, eg. ['cat','fish']
    # names contain the list of list you have.
    set_of_items = set(item) # set(['cat','fish'])
    count = 0
    for value in names:
        if set_of_items & set(value) == set_of_items:
            count+=1
    return count

names =  [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat'],['cat', 'bird', 'fish'], ['fish', 'bird']]
# Now for each of your possibilities which you can generate
# Chain flattens the list, set removes duplicates, and combinations generates all possible pairs.
permuted_values = list(itertools.combinations(set(itertools.chain.from_iterable(names)), 2))
d = {}
for v in permuted_values:
    d[str(v)] = listOccurences(v, names)
# The key in the dict being a list cannot be possible unless it's converted to a string.
print(d)
# {"['fish', 'dog']": 1, "['cat', 'dog']": 1, "['cat', 'fish']": 3, "['cat', 'bird']": 1, "['fish', 'bird']": 2}

您可以使用此属性并获得您想要的计数。

csrf_protection = TRUE

答案 3 :(得分:1)

首先计算单词的所有2个组合,如果两个术语出现在列表项中,则在result字典中增加其值:( l是整个列表中不同元素的列表):

from collections import defaultdict
from itertools import combinations, chain


names =  [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat'],
 ['cat', 'bird', 'fish'], ['fish', 'bird']]
l = set(chain.from_iterable(names)) # {'dog', 'bird', 'cat', 'fish'}
result = defaultdict(int)
for x in (list(combinations(l, 2))):
    for y in names:
        if((x[0] in y) and (x[1] in y)):
            result[x[0],x[1]] += 1


result # defaultdict(<class 'int'>, {('fish', 'bird'): 2, ('cat', 'dog'): 1, ('cat', 'fish'): 3, ('fish', 'dog'): 1, ('cat', 'bird'): 1})

答案 4 :(得分:0)

此处列出的解决方案对我的大型数据集(数十万个)不起作用,它们太慢了。以下解决方案更快,只需要几分之一秒。

点击此处的Counter类

https://docs.python.org/2/library/collections.html#collections.Counter

# generate combinations for each sub list seperately
lists_of_pairs = [list(itertools.combinations(sub_list, 2)) for sub_list in names]
# flatten the lists of pairs to 1 large list of pairs
all_pairs = [pair for pairs_list in lists_of_pairs for pair in pairs_list]
# let the Counter do the rest for you
co_occurences_counts = Counter(all_pairs)