Scala for Java int Arrays.binarySearch(Object[] array, object)
是否有替换?
问题是Scala的数组不是协变的,所以我必须先将stringArray: Array[String]
这样投射出来:
stringArray.asInstanceOf[Array[Object]]
有更好的解决方案吗?
答案 0 :(得分:42)
Scala 2.11将scala.collection.Searching
添加到标准库中。它使用二进制搜索索引序列,否则使用线性搜索。
import scala.collection.Searching._
Array(1, 2, 3, 4, 5).search(3)
答案 1 :(得分:17)
据我所知,没有内置任何内容,但您可以使用pimp-my-library pattern来轻松完成此任务。像这样:
class ObjectArrayTools[T <: AnyRef](a: Array[T]) {
def binarySearch(key: T) = {
java.util.Arrays.binarySearch(a.asInstanceOf[Array[AnyRef]],key)
}
}
implicit def anyrefarray_tools[T <: AnyRef](a: Array[T]) = new ObjectArrayTools(a)
scala> Array("a","fish","is","some","thing").binarySearch("some")
res26: Int = 3
scala> Array("a","fish","is","some","thing").binarySearch("bye")
res28: Int = -2
如果您需要,可以将其他java.util.Arrays
对象方法添加到同一个类中。
一般来说,我觉得习惯于总是导入你最喜欢的Scala实用程序的集合是个好主意。添加这样的功能非常容易,你也可以这样做,而不是继续输入.asInstanceOf[Array[AnyRef]]
,只需稍加努力就可以让自己显着提高工作效率。
答案 2 :(得分:4)
阵列是有趣的野兽。如果您尝试使用'ObjectArrayTools'提供的示例中的代码:
Array(1, 2, 3, 4, 5).binarySearch(3)
你得到了
error: value binarySearch is not a member of Array[Int]
Array(1, 2, 3, 4, 5).binarySearch(3)
有关Scala中Arrays的内容,请参阅this document。在任何情况下,您都可以使用此代码,尽管它使用Seq而不是Array。但是,它还有一个额外的好处,就是使用Ordering(它恰好也是一个Java Comparator。所以你可以根据需要自定义有序行为。)
import _root_.scala.collection.JavaConversions._
import java.util.{Collections, List => JList}
class SearchableSeq[T](a: Seq[T])(implicit ordering: Ordering[T]) {
val list: JList[T] = a.toList
def binarySearch(key: T): Int = Collections.binarySearch(list, key, ordering)
}
implicit def seqToSearchable[T](a: Seq[T])(implicit ordering: Ordering[T]) =
new SearchableSeq(a)(ordering)
一些例子:
scala> List(1, 2, 3, 4, 5).binarySearch(3)
res0: Int = 2
scala> List(1D, 2D, 3D, 4D, 5D).binarySearch(3.5)
res1: Int = -4
scala> List("a","fish","is","some","thing").binarySearch("bye")
res2: Int = -2
答案 3 :(得分:0)
在scala中编写它并不困难
object BSearch {
def interative[T](array: Array[T], value: T)(implicit arithmetic: Numeric[T]): Int = {
var left: Int = 0;
var right: Int = array.length - 1;
while (right > left) {
val mid = left + (right - left) / 2
val comp = arithmetic.compare(array(mid), value)
if (comp == 0)
return mid; //negative if test < value
else if (comp > 0) //list(mid) > value
right = mid - 1;
else if (comp < 0) //list(mid) < value
left = mid + 1;
}
-1;
}
BSearch.interative(array, value)
答案 4 :(得分:0)
自提出这个问题以来已经过了几年,想过做一些比较测试,希望它可以帮助一些人做出决定:
import scala.collection.Searching._
import _root_.scala.collection.JavaConversions._
import java.util.{Collections, List => JList}
import scala.reflect.ClassTag
class ObjectArrayTools[T <: Int](a: Array[T]) {
def binarySearch(key: T) = {
java.util.Arrays.binarySearch(a.asInstanceOf[Array[Int]],key)
}
}
class SearchableSeq[T](a: Seq[T])(implicit ordering: Ordering[T]) {
val list: JList[T] = a.toList
def binarySearch2(key: T): Int = Collections.binarySearch(list, key, ordering)
}
object BinarySearch {
implicit def anyrefarray_tools[T <: Int](a: Array[T]) = new ObjectArrayTools(a)
implicit def seqToSearchable[T](a: Seq[T])(implicit ordering: Ordering[T]) =
new SearchableSeq(a)(ordering)
def main(args:Array[String]) {
val informationArray = Array(1,2,3,4,5,6,7,8,9,10,11,12,14,15,18,20,22,23,25,26)
val informationList = List(1,2,3,4,5,6,7,8,9,10,11,12,14,15,18,20,22,23,25,26)
//val sortedArray = sortList(informationArray)
val sortedArray = informationArray
val sortedList = informationList
for(x <- 0 to 2) {
val startTime = System.nanoTime
val result = binarySearch(sortedArray, 5)
val result2 = binarySearch(sortedArray, 19)
println(s"Custom search time elapsed: ${(System.nanoTime - startTime)}")
val startTime2 = System.nanoTime
val result3 = sortedArray.search(5)
val result4 = sortedArray.search(19)
println(s"Scala search time elapsed: ${(System.nanoTime - startTime2)}")
val startTime3 = System.nanoTime
val result5 = sortedArray.binarySearch(5)
val result6 = sortedArray.binarySearch(19)
println(s"Java search casting time elapsed: ${(System.nanoTime - startTime3)}")
val startTime4 = System.nanoTime
val result7 = sortedList.binarySearch2(5)
val result8 = sortedList.binarySearch2(19)
println(s"Java search as list time elapsed: ${(System.nanoTime - startTime4)}")
val startTime9 = System.nanoTime
val result10 = binarySearchWithImplicitConversion(sortedArray, 5)
val result11 = binarySearchWithImplicitConversion(sortedArray, 19)
println(s"Custom generic time elapsed: ${(System.nanoTime - startTime9)}")
println("---")
}
}
/*def sortList(list:Array[Int]):Array[Int] = {
import com.walcron.etc.Quicksort._
quickSort(list)
}*/
//def binarySearch[T <% Ordered[T]](list:Array[T], valueToBeSearch:T)(implicit t:ClassTag[T]):Int = {
def binarySearch(list:Array[Int], valueToBeSearch:Int):Int = {
def search(start:Int, end:Int):Int = {
val pos = ((end - start) / 2) + start
val curr = list(pos)
if(curr == valueToBeSearch) {
pos
}
else if((end - start) <= 1) {
-1 * (pos + 1) // Indicates the value should be inserted
}
else if(valueToBeSearch > curr) {
search(pos, end)
}
else {
search(start, pos)
}
}
search(0, list.length)
}
def binarySearchWithImplicitConversion[T <% Ordered[T]](list:Array[T], valueToBeSearch:T)(implicit t:ClassTag[T]):Int = {
def search(start:Int, end:Int):Int = {
val pos = ((end - start) / 2) + start
val curr = list(pos)
if(curr == valueToBeSearch) {
pos
}
else if((end - start) <= 1) {
-1 * (pos + 1) // Indicates the value should be inserted
}
else if(valueToBeSearch > curr) {
search(pos, end)
}
else {
search(start, pos)
}
}
search(0, list.length)
}
}
3次运行后返回的结果(因为Scala编译器确实需要一些提升)
Custom search time elapsed: 873373
Scala search time elapsed: 9322723
Java search casting time elapsed: 126380
Java search as list time elapsed: 7375826
Custom generic time elapsed: 4421972
---
Custom search time elapsed: 10372
Scala search time elapsed: 34885
Java search casting time elapsed: 10861
Java search as list time elapsed: 104596
Custom generic time elapsed: 57964
---
Custom search time elapsed: 9121
Scala search time elapsed: 31667
Java search casting time elapsed: 11815
Java search as list time elapsed: 53387
Custom generic time elapsed: 60773
一般来说,java二进制搜索执行方式更好;斯卡拉的搜索确实非常糟糕。还有另一个值得注意的表现,似乎泛型类型隐含地拖累了这里的性能(所以也许有人可以帮助修复泛型类型)......但间接地它会显示出巨大的性能影响。
答案 5 :(得分:-2)
@尔摩西-比里
如果您要在Scala中编写它,为什么要在Scala中用Java编写它?为什么不在Scala中实际写它?
def split(list:List[Char]): (List[Char], List[Char]) = {
val len = list.size
(list.slice(0, len/2), list.slice(len/2,len))
}
def search(target: Char, list: List[Char]):Boolean = {
list match {
case Nil => false
case head :: Nil => if (head == target) true else false
case _ => {
val c = split(list)
if (c._1.last >= target) search(target, c._1) else search(target, c._2)
}
}
}