我使用defaultdicts存储值列表,其中keys
是可以观察到值的句点。
从所有感兴趣的时段列表中查找时,我想在我的defaultdict中找到最接近的时段(注意:并非所有时段都存储在defaultdict中)。
由于默认情况未排序,因此以下方法不会返回正确的值。
是否有另一种方法可以返回默认分区的最近可用密钥?
from collections import defaultdict
import numpy as np
def_dict = defaultdict(list)
# entries that will be stored in the defaultdict
reg_dict = {0: ["a", "b"], 2: ["c", "d"], 5: ["k", "h"], -3: ["i", "l"]}
# store items from regular dict in defaultdict
for k, v in reg_dict.items():
def_dict[k] = v
# Lookup periods
periods = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
for period in periods:
# this approach does not return the right keys as defaultdicts are not sorted
closest_key = np.abs(np.array(list(def_dict.keys())) - period).argmin()
print("period: ", period, " - looked up key: ", closest_key)
返回以下内容:
period: -1 - looked up key: 0
period: 0 - looked up key: 0
period: 1 - looked up key: 0
period: 2 - looked up key: 1
period: 3 - looked up key: 1
period: 4 - looked up key: 2
period: 5 - looked up key: 2
period: 6 - looked up key: 2
period: 7 - looked up key: 2
period: 8 - looked up key: 2
答案 0 :(得分:2)
使用OrderedDict
和排序键,您可以使用二进制搜索。
对于大量的键,查找将比您当前的方法快得多。
由于您需要最近的密钥,因此您需要找到最右边的密钥低于x,最左边的密钥高于x。找到最右边的密钥低于x的索引i
后,另一个候选者(最左边的密钥高于x)将在索引i+1
上。
您需要确保这些索引仍在您的数组中。
最后,您只需要从这两个值计算到x的距离。
的文档答案 1 :(得分:1)
我理解的方式,你想要一个与此相似的输出?
[0, 0, 0, 2, 2, 5, 5, 5, 5, 5]
对于上述情况,逻辑将是
closest_key = [min(def_dict.keys(), key = lambda x: abs(x - p)) for p in periods]
指定在python函数中构建的可选key
参数在这种情况下很有用。
答案 2 :(得分:1)
我同意@septra您需要euqlidean距离,但这也可以通过numpy实现:
from collections import defaultdict
import numpy as np
def_dict = defaultdict(list)
# entries that will be stored in the defaultdict
reg_dict = {0: ["a", "b"], 2: ["c", "d"], 5: ["k", "h"], -3: ["i", "l"]}
# store items from regular dict in defaultdict
for k, v in reg_dict.items():
def_dict[k] = v
periods = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
a = list(def_dict.keys())
for period in periods:
closest_key = np.sqrt(np.power(np.add(a, -period),2)).argmin()
# OR closest_key = np.abs(np.add(a, -period)).argmin()
print("period: ", period, " - looked up key: ", a[closest_key])
答案 3 :(得分:1)
正如Eric所说,为了有效地做到这一点,你应该使用二进制搜索。然而,如果键的数量很小,则简单的线性搜索可能是足够的。没有必要使用defaultdict或OrderedDict,只需对键进行排序。
import numpy as np
# entries
reg_dict = {0: ["a", "b"], 2: ["c", "d"], 5: ["k", "h"], -3: ["i", "l"]}
keys = np.array(sorted(reg_dict.keys()))
print('keys', keys)
# Lookup periods
periods = np.arange(-1, 9)
for period in periods:
closest_key = keys[np.abs(keys - period).argmin()]
print("period: ", period, " - looked up key: ", closest_key)
<强>输出强>
keys [-3 0 2 5]
period: -1 - looked up key: 0
period: 0 - looked up key: 0
period: 1 - looked up key: 0
period: 2 - looked up key: 2
period: 3 - looked up key: 2
period: 4 - looked up key: 5
period: 5 - looked up key: 5
period: 6 - looked up key: 5
period: 7 - looked up key: 5
period: 8 - looked up key: 5