python中两个巨大的多维数组之间的Spedup距离和汇总计算

时间:2017-02-15 18:48:09

标签: python numpy

我只有一年使用python的经验。我想基于两个多维数组DF_AllDF_On找到摘要统计数据。两者都有XY个值。创建一个函数,将距离计算为sqrt((X-X0)^2 + (Y-Y0)^2)并生成摘要,如下面的代码所示。我的问题是:有没有办法让这段代码运行得更快?我更喜欢原生的python方法,但其他策略(如numba也欢迎)。

以下示例(玩具)代码在我的Windows-7 x64桌面上运行仅需50毫秒。但是我的DF_All有超过10,000行,我需要进行大量的计算,导致执行时间过长。

import numpy as np
import pandas as pd
import json, random

# create data
KY = ['ER','WD','DF']
DS = ['On','Off']

DF_All = pd.DataFrame({'KY': np.random.choice(KY,20,replace = True),
                       'DS': np.random.choice(DS,20,replace = True),
                       'X': random.sample(range(1,100),20),
                       'Y': random.sample(range(1,100),20)})


DF_On = DF_All[DF_All['DS']=='On']

# function 
def get_values(DF_All,X = list(DF_On['X'])[0],Y = list(DF_On['Y'])[0]):
    dist_vector = np.sqrt((DF_All['X'] - X)**2 +  (DF_All['Y'] - Y)**2) # computes distance

    DF_All = DF_All[dist_vector<35] # filters if distance is < 35
#    print(DF_All.shape)

    DS_summary = [sum(DF_All['DS']==x) for x in  ['On','Off']] # get summary 
    KY_summary = [sum(DF_All['KY']==x) for x in  ['ER','WD','DF']] # get summary 

    joined_summary = DS_summary + KY_summary # join two summary lists 
    return(joined_summary) # return

Array_On = DF_On.values.tolist() # convert to array then to list 
Values = [get_values(DF_All,ZZ[2],ZZ[3]) for ZZ in Array_On] # list comprehension to get DS and KY summary for all rows of Array_On list

Array_Updated = [x + y for x,y in zip(Array_On,Values)] # appending the summary list to Array_On list
Array_Updated = pd.DataFrame(Array_Updated) # converting to pandas dataframe 
print(Array_Updated) 

1 个答案:

答案 0 :(得分:1)

这是一种利用MAGICK_CODER_MODULE_PATH摆脱那里循环的方法 -

vectorization

使用少量内存,调整内存 -

from scipy.spatial.distance import cdist

def get_values_vectorized(DF_All, Array_On):
    a = DF_All[['X','Y']].values
    b = np.array(Array_On)[:,2:].astype(int)
    v_mask = (cdist(b,a) < 35).astype(int)

    DF_DS = DF_All.DS.values
    DS_sums = v_mask.dot(DF_DS[:,None] == ['On','Off'])

    DF_KY = DF_All.KY.values
    KY_sums = v_mask.dot(DF_KY[:,None] == ['ER','WD','DF'])
    return np.column_stack(( DS_sums, KY_sums ))

运行时测试 -

案例#1:原始样本大小为def get_values_vectorized_v2(DF_All, Array_On): a = DF_All[['X','Y']].values b = np.array(Array_On)[:,2:].astype(int) v_mask = cdist(a,b) < 35 DF_DS = DF_All.DS.values DS_sums = [((DF_DS==x)[:,None] & v_mask).sum(0) for x in ['On','Off']] DF_KY = DF_All.KY.values KY_sums = [((DF_KY==x)[:,None] & v_mask).sum(0) for x in ['ER','WD','DF']] out = np.column_stack(( np.column_stack(DS_sums), np.column_stack(KY_sums))) return out

20

案例#2:样本大小为In [417]: %timeit [get_values(DF_All,ZZ[2],ZZ[3]) for ZZ in Array_On] 100 loops, best of 3: 16.3 ms per loop In [418]: %timeit get_values_vectorized(DF_All, Array_On) 1000 loops, best of 3: 386 µs per loop

2000