使用由列变量确定的chunksize加载pandas数据帧

时间:2017-02-14 14:31:47

标签: python pandas chunks

如果我的csv文件太大而无法加载到带有pandas的内存中(在本例中为35gb),我知道可以使用chunksize以块的形式处理文件。

但是我想知道是否可以根据列中的值更改chunksize。

我有一个ID列,然后每个ID都有几行信息,如下所示:

ID,   Time,  x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
ect...

我不想将ID分成不同的块。例如,将处理大小为4的块:

ID,   Time,  x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3 <--this extra line is included in the 4 chunk

ID,   Time,  x, y
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
...

有可能吗?

如果没有使用带有for循环的csv库:

for line in file:
    x += 1
    if x > 1000000 and curid != line[0]:
        break
    curid = line[0]
    #code to append line to a dataframe

虽然我知道这只会创建一个块,而for循环需要很长时间才能处理。

2 个答案:

答案 0 :(得分:4)

如果您逐行遍历csv文件,您可以使用依赖于任何列的生成器yield块。

工作示例:

import pandas as pd

def iter_chunk_by_id(file):
    csv_reader = pd.read_csv(file, iterator=True, chunksize=1, header=None)
    first_chunk = csv_reader.get_chunk()
    id = first_chunk.iloc[0,0]
    chunk = pd.DataFrame(first_chunk)
    for l in csv_reader:
        if id == l.iloc[0,0]:
            id = l.iloc[0,0]
            chunk = chunk.append(l)
            continue
        id = l.iloc[0,0]
        yield chunk
        chunk = pd.DataFrame(l)
    yield chunk

## data.csv ##
# 1, foo, bla
# 1, off, aff
# 2, roo, laa
# 3, asd, fds
# 3, qwe, tre
# 3, tre, yxc   

chunk_iter = iter_chunk_by_id("data.csv")

for chunk in chunk_iter:
    print(chunk)
    print("_____")

输出:

   0     1     2
0  1   foo   bla
1  1   off   aff
_____
   0     1     2
2  2   roo   laa
3  2   jkl   xds
_____
   0     1     2
4  3   asd   fds
5  3   qwe   tre
6  3   tre   yxc
_____

答案 1 :(得分:0)

我以@elcombato提供的答案为基础,以获取任何块大小。我实际上有一个相似的用例,并且逐行处理每一行使我的程序难以忍受

def iter_chunk_by_id(file_name, chunk_size=10000):
"""generator to read the csv in chunks of user_id records. Each next call of generator will give a df for a user"""

csv_reader = pd.read_csv(file_name, compression='gzip', iterator=True, chunksize=chunk_size, header=0, error_bad_lines=False)
chunk = pd.DataFrame()
for l in csv_reader:
    l[['id', 'everything_else']] = l[
        'col_name'].str.split('|', 1, expand=True)
    hits = l['id'].astype(float).diff().dropna().nonzero()[0]
    if not len(hits):
        # if all ids are same
        chunk = chunk.append(l[['col_name']])
    else:
        start = 0
        for i in range(len(hits)):
            new_id = hits[i]+1
            chunk = chunk.append(l[['col_name']].iloc[start:new_id, :])
            yield chunk
            chunk = pd.DataFrame()
            start = new_id
        chunk = l[['col_name']].iloc[start:, :]

yield chunk