我有一个使用Tensorflow的简单神经网络。 这是会议:
with tensorFlow.Session() as sess:
sess.run(tensorFlow.global_variables_initializer())
for epoch in range(epochs):
i = 0
epochLoss = 0
for _ in range(int(len(data) / batchSize)):
ex, ey = nextBatch(i)
i += 1
feedDict = {x :ex, y:ey }
_, cos = sess.run([optimizer,cost], feed_dict= feedDict)
epochLoss += cos / (int(len(data)) / batchSize)
print("Epoch", epoch + 1, "completed out of", epochs, "loss:", "{:.9f}".format(epochLoss))
save_path = saver.save(sess, "model.ckpt")
print("Model saved in file: %s" % save_path)
在最后两行我保存了模型并在另一个类中恢复了图形:
with new_graph.as_default():
with tf.Session(graph=new_graph) as sess:
sess.run(tf.global_variables_initializer())
new_saver = tf.train.import_meta_graph('model.ckpt.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
我想重新训练模型,这意味着不要初始化权重,只是从它停止的最后一点更新它们。
我该怎么做?
答案 0 :(得分:2)
来自https://www.tensorflow.org/api_docs/python/state_ops/saving_and_restoring_variables
tf.train.Saver.restore(sess,save_path)
恢复以前保存的变量。
此方法运行构造函数添加的ops以进行恢复 变量。它需要启动图表的会话。的的 要恢复的变量不必初始化,如 恢复本身就是一种初始化变量的方法。
以下示例来自https://www.tensorflow.org/how_tos/variables/
# Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
...