我试图将const int
数组的总和作为constexpr
,以便我可以将sum用作另一个数组的大小
constexpr int arr[] = {1, 2, 3};
constexpr int sum1 = std::accumulate(arr, arr + 3, 0); // not OK
int arr1[sum1];
由于std::accumulate()
未返回constexpr
,因此无法编译。我最终得到了像这样的解决方法
template <size_t N>
constexpr int sum(int const a[])
{
return a[N-1] + sum<N - 1>(a);
}
template <>
constexpr int sum<0>(int const a[])
{
return 0;
}
constexpr int arr[] = {1, 2, 3};
constexpr int sum1 = sum<3>(arr);
int arr1[sum1];
有没有更简单的解决方案?
答案 0 :(得分:3)
由于C ++ 14的轻松constexpr,你可以这样做:
#include <iostream>
constexpr int arr[] = {1, 2, 3};
template <size_t Size>
constexpr int sum(const int (&arr)[Size])
{
int ret = 0;
for (int i = 0; i < Size; ++i)
ret += arr[i];
return ret;
}
int main()
{
int arr1[sum(arr)];
std::cout << sizeof(arr1) / sizeof(int);
}
答案 1 :(得分:3)
使用C ++ 14:
template<typename T, std::size_t N>
constexpr T array_sum(T (&array)[N]) {
T sum = 0;
for (std::size_t i = 0; i < N; i++) {
sum += array[i];
}
return sum;
};
并使用它:
int arr[] = {1, 2, 3};
int brr[array_sum(arr)];
答案 2 :(得分:3)
+1 C ++ 14解决方案,但我提出了一个基于简单递归constexpr
函数的C ++ 11解决方案
template <typename T, std::size_t N>
constexpr T aSum (T const (&a)[N], std::size_t i = 0U)
{ return i < N ? (a[i] + aSum(a, i+1U)) : T{}; }
所以可以写
constexpr int arr[] {1, 2, 3};
constexpr int sum1 { aSum(arr) };
和sum1
成为6
答案 3 :(得分:1)
//With C++14
#include <iostream>
using namespace std;
template <typename T, std::size_t N>
constexpr T arraysum(const T (&array)[N]) {
T sum = 0;
for (size_t i = 0; i < N; ++i) {
sum += array[i];
}
return sum;
}
template <typename T, std::size_t N>
constexpr T arraysize(T (&)[N]) {
return N;
}
int main() {
// your code goes here
constexpr int arr[] = {1, 2, 3};
constexpr int size = arraysize(arr);
cout<<size<<endl;
constexpr int sum1 = arraysum(arr);
cout <<sum1;
int arr2[sum1];
return 0;
}
检查代码here
答案 4 :(得分:1)
有一些编译的代码,但是使用C ++ 11,并且只需要O(log(N))深度递归。
template<typename Iterator >
constexpr size_t c_dist(Iterator first, Iterator last){ return (last - first); }
template< typename Iterator, typename U>
constexpr U c_accumulate(Iterator first, Iterator last, U u)
{
return (first == last)
? u
: c_dist(first , last) == 1
? ( u + *first )
:
c_accumulate(first, first + c_dist(first, last ) / 2, u ) +
c_accumulate(first + c_dist(first, last)/2, last, u);
}
constexpr int a[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
constexpr int sum = c_accumulate(a, a + sizeof(a)/sizeof(a[0]), 0);
static_assert(sum == 21*22/2, "!");