当我输入以下命令时,我可以运行spark
$ pyspark
和
$ pyspark --master local [2]
但不是在我运行这个时 -
$ pyspark --master yarn-client
它为我提供了一个巨大的堆栈跟踪,下面给出了更多或更清晰可用的here。
$ pyspark --master yarn-client
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
17/02/13 22:04:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/02/13 22:04:15 WARN util.Utils: Your hostname, aamir-UX303LAB resolves to a loopback address: 127.0.1.1; using 10.0.0.240 instead (on interface wlan0)
17/02/13 22:04:15 WARN util.Utils: Set SPARK_LOCAL_IP if you need to bind to another address
17/02/13 22:04:17 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/02/13 22:04:33 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED!
17/02/13 22:04:33 ERROR spark.SparkContext: Error initializing SparkContext.
java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:584)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:546)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:240)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:236)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
17/02/13 22:04:33 ERROR client.TransportClient: Failed to send RPC 8657965417329630894 to /10.0.0.240:60580: java.nio.channels.ClosedChannelException
java.nio.channels.ClosedChannelException
17/02/13 22:04:33 ERROR cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Sending RequestExecutors(0,0,Map()) to AM was unsuccessful
java.io.IOException: Failed to send RPC 8657965417329630894 to /10.0.0.240:60580: java.nio.channels.ClosedChannelException
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:249)
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:233)
at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680)
at io.netty.util.concurrent.DefaultPromise$LateListeners.run(DefaultPromise.java:845)
at io.netty.util.concurrent.DefaultPromise$LateListenerNotifier.run(DefaultPromise.java:873)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.nio.channels.ClosedChannelException
17/02/13 22:04:33 ERROR util.Utils: Uncaught exception in thread Yarn application state monitor
org.apache.spark.SparkException: Exception thrown in awaitResult
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)
at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.requestTotalExecutors(CoarseGrainedSchedulerBackend.scala:508)
at org.apache.spark.scheduler.cluster.YarnSchedulerBackend.stop(YarnSchedulerBackend.scala:93)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.stop(YarnClientSchedulerBackend.scala:151)
at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:455)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1605)
at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1798)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1287)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1797)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:108)
Caused by: java.io.IOException: Failed to send RPC 8657965417329630894 to /10.0.0.240:60580: java.nio.channels.ClosedChannelException
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:249)
at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:233)
at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680)
at io.netty.util.concurrent.DefaultPromise$LateListeners.run(DefaultPromise.java:845)
at io.netty.util.concurrent.DefaultPromise$LateListenerNotifier.run(DefaultPromise.java:873)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.nio.channels.ClosedChannelException
17/02/13 22:04:33 WARN spark.SparkContext: Another SparkContext is being constructed (or threw an exception in its constructor). This may indicate an error, since only one SparkContext may be running in this JVM (see SPARK-2243). The other SparkContext was created at:
org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
java.lang.reflect.Constructor.newInstance(Constructor.java:423)
py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:240)
py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
py4j.Gateway.invoke(Gateway.java:236)
py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
py4j.GatewayConnection.run(GatewayConnection.java:214)
java.lang.Thread.run(Thread.java:745)
17/02/13 22:04:33 ERROR spark.SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: YarnSparkHadoopUtil is not available in non-YARN mode!
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.get(YarnSparkHadoopUtil.scala:352)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:366)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:834)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:167)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:149)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:497)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:240)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:236)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
17/02/13 22:04:33 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/02/13 22:04:33 ERROR util.Utils: Uncaught exception in thread Thread-2
org.apache.spark.SparkException: YarnSparkHadoopUtil is not available in non-YARN mode!
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.get(YarnSparkHadoopUtil.scala:352)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.stop(YarnClientSchedulerBackend.scala:152)
at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:455)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1605)
at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1798)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1287)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1797)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:565)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:240)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:236)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
17/02/13 22:04:33 WARN metrics.MetricsSystem: Stopping a MetricsSystem that is not running
Traceback (most recent call last):
File "/usr/local/spark/python/pyspark/shell.py", line 47, in <module>
spark = SparkSession.builder.getOrCreate()
File "/usr/local/spark/python/pyspark/sql/session.py", line 169, in getOrCreate
sc = SparkContext.getOrCreate(sparkConf)
File "/usr/local/spark/python/pyspark/context.py", line 294, in getOrCreate
SparkContext(conf=conf or SparkConf())
File "/usr/local/spark/python/pyspark/context.py", line 115, in __init__
conf, jsc, profiler_cls)
File "/usr/local/spark/python/pyspark/context.py", line 168, in _do_init
self._jsc = jsc or self._initialize_context(self._conf._jconf)
File "/usr/local/spark/python/pyspark/context.py", line 233, in _initialize_context
return self._jvm.JavaSparkContext(jconf)
File "/usr/local/spark/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", line 1401, in __call__
File "/usr/local/spark/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: org.apache.spark.SparkException: YarnSparkHadoopUtil is not available in non-YARN mode!
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.get(YarnSparkHadoopUtil.scala:352)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:366)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:834)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:167)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:149)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:497)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:240)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:236)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
>>>
我在伪分布式模式下安装了hadoop,启动了dfs.sh和yarn.sh.他们似乎正在运行,因为$ jps给了我 -
14002 SecondaryNameNode
13796 DataNode
14311 NodeManager
15658 Jps
14171 ResourceManager
13631 NameNode
我不在虚拟机上,我使用的是ubuntu和Hadoop 2.7,我正在使用spark 2.0.1。
spark-env.sh中的条目 -
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export YARN_CONF_DIR=/usr/local/hadoop/etc/hadoop
bashrc看起来像这样 -
export JAVA_HOME=/usr/lib/jvm/java-8-oracle/
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export HIVE_HOME=/usr/local/hive
export PATH=$PATH:$HIVE_HOME/bin
export CLASSPATH=$CLASSPATH:HADOOP_HOME/lib/*:.
export CLASSPATH=$CLASSPATH:HIVE_HOME/lib/*:.
export DERBY_HOME=/usr/local/derby
export PATH=$PATH:$DERBY_HOME/bin
export CLASSPATH=$CLASSPATH:$DERBY_HOME/lib/derby.jar:$DERBY_HOME/lib/derbytools.jar
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
export PATH=$PATH:$SPARK_HOME/sbin
非常感谢您的帮助!!
答案 0 :(得分:-1)
尝试运行pyspark --master yarn --deploy-mode client