在numpy数组求和中将nan视为零,除了所有数组中的nan

时间:2017-02-13 17:21:00

标签: python numpy nan missing-data

我有两个numpy数组NS,EW总结。他们每个人在不同的位置都有缺失值,比如

NS = array([[  1.,   2.,  nan],
       [  4.,   5.,  nan],
       [  6.,  nan,  nan]])
EW = array([[  1.,   2.,  nan],
       [  4.,  nan,  nan],
       [  6.,  nan,   9.]]

如何以numpy方式执行求和运算,如果一个阵列在一个位置具有nan,则将nan视为零,如果两个阵列在同一位置具有nan,则保持nan。

我期望看到的结果是

SUM = array([[  2.,   4.,  nan],
           [  8.,  5.,  nan],
           [  12.,  nan,   9.]])

当我尝试

SUM=np.add(NS,EW)

它给了我

SUM=array([[  2.,   4.,  nan],
       [  8.,  nan,  nan],
       [ 12.,  nan,  nan]])

当我尝试

SUM = np.nansum(np.dstack((NS,EW)),2)

它给了我

SUM=array([[  2.,   4.,   0.],
       [  8.,   5.,   0.],
       [ 12.,   0.,   9.]])

当然,我可以通过元素级操作来实现我的目标,

for i in range(np.size(NS,0)):
    for j in range(np.size(NS,1)):
        if np.isnan(NS[i,j]) and np.isnan(EW[i,j]):
            SUM[i,j] = np.nan
        elif np.isnan(NS[i,j]):
            SUM[i,j] = EW[i,j]
        elif np.isnan(EW[i,j]):
            SUM[i,j] = NS[i,j]
        else:
            SUM[i,j] = NS[i,j]+EW[i,j]

但速度很慢。所以我正在寻找一个更加笨拙的解决方案来解决这个问题。

提前感谢您的帮助!

3 个答案:

答案 0 :(得分:6)

方法#1: np.where -

的一种方法
def sum_nan_arrays(a,b):
    ma = np.isnan(a)
    mb = np.isnan(b)
    return np.where(ma&mb, np.nan, np.where(ma,0,a) + np.where(mb,0,b))

示例运行 -

In [43]: NS
Out[43]: 
array([[  1.,   2.,  nan],
       [  4.,   5.,  nan],
       [  6.,  nan,  nan]])

In [44]: EW
Out[44]: 
array([[  1.,   2.,  nan],
       [  4.,  nan,  nan],
       [  6.,  nan,   9.]])

In [45]: sum_nan_arrays(NS, EW)
Out[45]: 
array([[  2.,   4.,  nan],
       [  8.,   5.,  nan],
       [ 12.,  nan,   9.]])

方法#2:混合boolean-indexing -

的速度可能更快
def sum_nan_arrays_v2(a,b):
    ma = np.isnan(a)
    mb = np.isnan(b)
    m_keep_a = ~ma & mb
    m_keep_b = ma & ~mb
    out = a + b
    out[m_keep_a] = a[m_keep_a]
    out[m_keep_b] = b[m_keep_b]
    return out

运行时测试 -

In [140]: # Setup input arrays with 4/9 ratio of NaNs (same as in the question)
     ...: a = np.random.rand(3000,3000)
     ...: b = np.random.rand(3000,3000)
     ...: a.ravel()[np.random.choice(range(a.size), size=4000000, replace=0)] = np.nan
     ...: b.ravel()[np.random.choice(range(b.size), size=4000000, replace=0)] = np.nan
     ...: 

In [141]: np.nanmax(np.abs(sum_nan_arrays(a, b) - sum_nan_arrays_v2(a, b))) # Verify
Out[141]: 0.0

In [142]: %timeit sum_nan_arrays(a, b)
10 loops, best of 3: 141 ms per loop

In [143]: %timeit sum_nan_arrays_v2(a, b)
10 loops, best of 3: 177 ms per loop

In [144]: # Setup input arrays with lesser NaNs
     ...: a = np.random.rand(3000,3000)
     ...: b = np.random.rand(3000,3000)
     ...: a.ravel()[np.random.choice(range(a.size), size=4000, replace=0)] = np.nan
     ...: b.ravel()[np.random.choice(range(b.size), size=4000, replace=0)] = np.nan
     ...: 

In [145]: np.nanmax(np.abs(sum_nan_arrays(a, b) - sum_nan_arrays_v2(a, b))) # Verify
Out[145]: 0.0

In [146]: %timeit sum_nan_arrays(a, b)
10 loops, best of 3: 69.6 ms per loop

In [147]: %timeit sum_nan_arrays_v2(a, b)
10 loops, best of 3: 38 ms per loop

答案 1 :(得分:2)

实际上,您的nansum方法几乎有效,您只需要再次添加nans

def add_ignore_nans(a, b):
    stacked = np.array([a, b])
    res = np.nansum(stacked, axis=0)
    res[np.all(np.isnan(stacked), axis=0)] = np.nan
    return res

>>> add_ignore_nans(a, b)
array([[  2.,   4.,  nan],
       [  8.,   5.,  nan],
       [ 12.,  nan,   9.]])

这比@Divakar的答案慢,但我想提一下你已经非常接近了! : - )

答案 2 :(得分:1)

我认为我们可以更加简洁,与Divakar的第二种方法一样。使用a = NSb = EW

na = numpy.isnan(a)
nb = numpy.isnan(b)
a[na] = 0
b[nb] = 0
a += b
na &= nb
a[na] = numpy.nan

尽管在您的方案中这是可行的,但操作可以在可能的情况下进行,以节省内存。最终结果位于a