如何在大熊猫中结合布尔索引器和多索引?

时间:2017-02-12 21:34:30

标签: python pandas dataframe multi-index

我有一个多索引数据框,我希望根据索引值和布尔条件提取子集。我希望使用多索引键和布尔索引器覆盖特定新值的值,以选择要修改的记录。

{
   "hostname": "test.novalocal",
   …
   "meta": {
      "foo": "bar",
      …
   },
   …
}

以下是示例数据的样子......

import pandas as pd 
import numpy as np

years        = [1994,1995,1996]
householdIDs = [ id for id in range(1,100) ]

midx = pd.MultiIndex.from_product( [years, householdIDs], names = ['Year', 'HouseholdID'] )

householdIncomes = np.random.randint( 10000,100000, size = len(years)*len(householdIDs) )
householdSize    = np.random.randint( 1,5, size = len(years)*len(householdIDs) )
df = pd.DataFrame( {'HouseholdIncome':householdIncomes, 'HouseholdSize':householdSize}, index = midx ) 
df.sort_index(inplace = True)

我能够使用索引和列标签成功查询数据框。

这个例子给了我1996年家庭3的HouseholdSize

  df.head()
=>                   HouseholdIncome  HouseholdSize
Year HouseholdID                                
1994 1                      23866              3
     2                      57956              3
     3                      21644              3
     4                      71912              4
     5                      83663              3

但是,我无法将布尔选择与多索引查询相结合......

pandas docs on Multi-indexing说有一种方法可以将布尔索引与多索引结合起来并给出一个示例......

   df.loc[  (1996,3 ) , 'HouseholdSize' ]
=> 1

......我似乎无法在我的数据框架上复制

In [52]: idx = pd.IndexSlice
In [56]: mask = dfmi[('a','foo')]>200

In [57]: dfmi.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]
Out[57]: 
lvl0           a    b
lvl1         foo  foo
A3 B0 C1 D1  204  206
      C3 D0  216  218
         D1  220  222
   B1 C1 D0  232  234
         D1  236  238
      C3 D0  248  250
         D1  252  254

在这个例子中,我希望看到1996年家庭户数超过2的所有家庭

1 个答案:

答案 0 :(得分:2)

Pandas.query()应该适用于这种情况:

df.query("Year == 1996 and HouseholdID > 2")

演示:

In [326]: with pd.option_context('display.max_rows',20):
     ...:     print(df.query("Year == 1996 and HouseholdID > 2"))
     ...:
                  HouseholdIncome  HouseholdSize
Year HouseholdID
1996 3                      28664              4
     4                      11057              1
     5                      36321              2
     6                      89469              4
     7                      35711              2
     8                      85741              1
     9                      34758              3
     10                     56085              2
     11                     32275              4
     12                     77096              4
...                           ...            ...
     90                     40276              4
     91                     10594              2
     92                     61080              4
     93                     65334              2
     94                     21477              4
     95                     83112              4
     96                     25627              2
     97                     24830              4
     98                     85693              1
     99                     84653              4

[97 rows x 2 columns]

<强>更新

  

有没有办法选择特定的列?

In [333]: df.loc[df.eval("Year == 1996 and HouseholdID > 2"), 'HouseholdIncome']
Out[333]:
Year  HouseholdID
1996  3              28664
      4              11057
      5              36321
      6              89469
      7              35711
      8              85741
      9              34758
      10             56085
      11             32275
      12             77096
                     ...
      90             40276
      91             10594
      92             61080
      93             65334
      94             21477
      95             83112
      96             25627
      97             24830
      98             85693
      99             84653
Name: HouseholdIncome, dtype: int32
  

最终我想覆盖数据帧上的数据。

In [331]: df.loc[df.eval("Year == 1996 and HouseholdID > 2"), 'HouseholdSize'] *= 10

In [332]: df.loc[df.eval("Year == 1996 and HouseholdID > 2")]
Out[332]:
                  HouseholdIncome  HouseholdSize
Year HouseholdID
1996 3                      28664             40
     4                      11057             10
     5                      36321             20
     6                      89469             40
     7                      35711             20
     8                      85741             10
     9                      34758             30
     10                     56085             20
     11                     32275             40
     12                     77096             40
...                           ...            ...
     90                     40276             40
     91                     10594             20
     92                     61080             40
     93                     65334             20
     94                     21477             40
     95                     83112             40
     96                     25627             20
     97                     24830             40
     98                     85693             10
     99                     84653             40

[97 rows x 2 columns]

<强> UPDATE2:

  

我想传递变量year而不是特定值。在那儿   比Year == " + str(year) + " and HouseholdID > " + str(householdSize)更清洁的方法吗?

In [5]: year = 1996

In [6]: household_ids = [1, 2, 98, 99]

In [7]: df.loc[df.eval("Year == @year and HouseholdID in @household_ids")]
Out[7]:
                  HouseholdIncome  HouseholdSize
Year HouseholdID
1996 1                      42217              1
     2                      66009              3
     98                     33121              4
     99                     45489              3