CUDA推力中的阵列长度

时间:2017-02-12 12:59:53

标签: cuda thrust

我的CUDA内核正在按键使用推力,排序和减少。 当我使用数组 超过460 时,它会开始显示不正确的结果。

任何人都可以解释这种行为吗?或者它与我的机器有关?

尽管规模很大,但排序正常,但REDUCE_BY_KEY效果不佳。并返回不正确的结果。

有关代码的更多详细信息, 我有4个阵列 1)输入键,定义为wholeSequenceArray。 2)在内核中定义的输入值,初始值为1。 3)输出键是保存输入键的不同值 4)输出值是保存与同一输入键对应的输入值之和。

有关reduce_by_key的更多说明,请访问此页面: https://thrust.github.io/doc/group__reductions.html#gad5623f203f9b3fdcab72481c3913f0e0

这是我的代码:

#include <cstdlib>
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
#include <cuda.h>
#include <cuda_runtime.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sort.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>

using namespace std;
#define size 461

__global__ void calculateOccurances(unsigned int *input_keys,
            unsigned int *output_Values) {
    int tid = threadIdx.x;

    const int N = size;
    __shared__ unsigned int input_values[N];

    unsigned int outputKeys[N];

    int i = tid;
    while (i < N) {
            if (tid < N) {
                    input_values[tid] = 1;
            }
            i += blockDim.x;
    }
    __syncthreads();

    thrust::sort(thrust::device, input_keys, input_keys + N);

    thrust::reduce_by_key(thrust::device, input_keys, input_keys + N,
                    input_values, outputKeys, output_Values);

    if (tid == 0) {
            for (int i = 0; i < N; ++i) {
                    printf("%d,", output_Values[i]);
            }
    }

}

int main(int argc, char** argv) {

    unsigned int wholeSequenceArray[size] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                    10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8,
                    9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7,
                    8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6,
                    7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5,
                    6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4,
                    5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3,
                    4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2,
                    3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1,
                    2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
                    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
                    20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
                    19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
                    18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                    17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
                    16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                    15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                    14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                    13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                    12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                    10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8,
                    9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7,
                    8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,1 };

    cout << "wholeSequenceArray:" << endl;
    for (int i = 0; i < size; i++) {
            cout << wholeSequenceArray[i] << ",";
    }

    cout << "\nStart C++ Array New" << endl;
    cout << "Size of Input:" << size << endl;

    cudaDeviceProp prop;
    cudaGetDeviceProperties(&prop, 0);
    printf("Max threads per block:  %d\n", prop.maxThreadsPerBlock);

    unsigned int counts[size];
    unsigned int *d_whole;
    unsigned int *d_counts;

    cudaMalloc((void**) &d_whole, size * sizeof(unsigned int));
    cudaMalloc((void**) &d_counts, size * sizeof(unsigned int));

    cudaMemcpy(d_whole, wholeSequenceArray, size * sizeof(unsigned int),
                    cudaMemcpyHostToDevice);

    calculateOccurances<<<1, size>>>(d_whole, d_counts);

    cudaMemcpy(counts, d_counts, size * sizeof(unsigned int),
                    cudaMemcpyDeviceToHost);

    cout << endl << "Counts" << endl << endl;
    for (int i = 0; i < size; ++i) {
            cout << counts[i] << ",";
    }
    cout << endl;

    cudaFree(d_whole);
}

1 个答案:

答案 0 :(得分:1)

当您在内核中调用推力算法时,将从每个CUDA线程完整地调度该推力算法。因此,您的代码在同一位置对相同数据(每个CUDA内核线程一次)执行461次排序操作。这意味着每个线程在排序操作期间移动数据时将相互踩踏。

如果您只想使用您在问题中概述的方法计算出现的数字(有效的直方图),并且您想要使用推力,则根本不需要编写CUDA内核。

如果你真的想在CUDA内核中(正确地)这样做,那么你需要将推力操作(sort和reduce_by_key)限制为仅从单个线程中执行。 (甚至这种方法也只限于一个区块)。

我并不认为第二种(CUDA内核)方法有多大意义,但为了完整性,我修改了代码以包含每种方法的正确示例。请注意,一旦执行缩小,打印出每个阵列中的所有461个条目就不再有任何意义,因此为了清楚起见,我将打印输出限制在每个阵列的前25个条目中:

$ cat t91.cu
#include <cstdlib>
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
#include <cuda.h>
#include <cuda_runtime.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sort.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include <thrust/iterator/constant_iterator.h>

using namespace std;
#define size 461

__global__ void calculateOccurances(unsigned int *input_keys,
            unsigned int *output_Values) {
    int tid = threadIdx.x;

    const int N = size;
    __shared__ unsigned int input_values[N];

    unsigned int outputKeys[N];

    int i = tid;
    while (i < N) {
            if (tid < N) {
                    input_values[tid] = 1;
            }
            i += blockDim.x;
    }
    __syncthreads();
    if (tid == 0){
      thrust::sort(thrust::device, input_keys, input_keys + N);

      thrust::reduce_by_key(thrust::device, input_keys, input_keys + N,
                    input_values, outputKeys, output_Values);
      }

    if (tid == 0) {
    printf("from kernel:\n");
            for (int i = 0; i < 25; ++i) {
                    printf("%d,", output_Values[i]);
            }
    }

}

int main(int argc, char** argv) {

    unsigned int wholeSequenceArray[size] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                    10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8,
                    9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7,
                    8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6,
                    7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5,
                    6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4,
                    5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3,
                    4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2,
                    3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1,
                    2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
                    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
                    20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
                    19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
                    18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                    17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
                    16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                    15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                    14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                    13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                    12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                    10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8,
                    9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7,
                    8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,1 };

    cout << "wholeSequenceArray:" << endl;
    for (int i = 0; i < size; i++) {
            cout << wholeSequenceArray[i] << ",";
    }

    cout << "\nStart C++ Array New" << endl;
    cout << "Size of Input:" << size << endl;

    cudaDeviceProp prop;
    cudaGetDeviceProperties(&prop, 0);
    printf("Max threads per block:  %d\n", prop.maxThreadsPerBlock);

//just using thrust

    thrust::device_vector<int> d_seq(wholeSequenceArray, wholeSequenceArray+size);
    thrust::device_vector<int> d_val_out(size);
    thrust::device_vector<int> d_key_out(size);

    thrust::sort(d_seq.begin(), d_seq.end());
    int rsize = thrust::get<0>(thrust::reduce_by_key(d_seq.begin(), d_seq.end(), thrust::constant_iterator<int>(1), d_key_out.begin(), d_val_out.begin())) - d_key_out.begin();
    std::cout << "rsize:" << rsize <<  std::endl;
    std::cout << "Thrust keys:" << std::endl;
    thrust::copy_n(d_key_out.begin(), rsize, std::ostream_iterator<int>(std::cout, ","));
    std::cout << std::endl << "Thrust vals:" << std::endl;
    thrust::copy_n(d_val_out.begin(), rsize, std::ostream_iterator<int>(std::cout, ","));
    std::cout << std::endl;


// in a cuda kernel


    unsigned int counts[size];
    unsigned int *d_whole;
    unsigned int *d_counts;

    cudaMalloc((void**) &d_whole, size * sizeof(unsigned int));
    cudaMalloc((void**) &d_counts, size * sizeof(unsigned int));

    cudaMemcpy(d_whole, wholeSequenceArray, size * sizeof(unsigned int),
                    cudaMemcpyHostToDevice);

    calculateOccurances<<<1, size>>>(d_whole, d_counts);

    cudaMemcpy(counts, d_counts, size * sizeof(unsigned int),
                    cudaMemcpyDeviceToHost);

    std::cout << "from Host:" << std::endl;
    cout << endl << "Counts" << endl << endl;
    for (int i = 0; i < 25; ++i) {
            cout << counts[i] << ",";
    }
    cout << endl;

    cudaFree(d_whole);
}
$ nvcc -arch=sm_61 -o t91 t91.cu
$ ./t91
wholeSequenceArray:
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,
Start C++ Array New
Size of Input:461
Max threads per block:  1024
rsize:20
Thrust keys:
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
Thrust vals:
24,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,
from kernel:
24,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,526324,526325,526325,526327,526329,from Host:

Counts

24,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,526324,526325,526325,526327,526329,
$

注意:

  1. 我在推力示例中包含了一个方法,因此您可以准确了解输出数组的大小。

  2. 推力方法应该可以独立于size参数正常工作 - 受GPU限制(例如内存大小)的限制。 CUDA内核方法实际上只是从单个线程执行推力代码,因此运行超过1个块并不是真的合理。

  3. 您可以参考this question/answer,了解有关使用CUDA内核推力的更多讨论。