从html响应中获取数据并通过pandas Dataframe通过以下代码提供数据后,我转置数据并打印结果。
r1 = bs4.BeautifulSoup(r.text, 'lxml').prettify()
r3 = pandas.read_html(r1, header=None, index_col=None)[0]
r3.dropna(inplace=True)
r4 = pandas.DataFrame.transpose(r3)
r5 = r4.index
print(r5)
我得到以下结果。
Index(['\n ',
'\n 2006-12\n ',
'\n 2007-12\n ',
'\n 2008-12\n ',
'\n 2009-12\n ',
'\n 2010-12\n ',
'\n 2011-12\n ',
'\n 2012-12\n ',
'\n 2013-12\n ',
'\n 2014-12\n ',
'\n 2015-12\n ',
'\n TTM\n '],
dtype='object')
如何删除此索引中的所有'\n'
和white spaces
以获取数字和TTM?
答案 0 :(得分:1)
IIUC你可以这样做:
In [98]: i
Out[98]:
Index(['\n ', '\n 2006-12\n ', '\n 2007-12\n
',
'\n 2008-12\n ', '\n 2009-12\n ', '\n
2010-12\n ',
'\n 2011-12\n ', '\n 2012-12\n ', '\n
2013-12\n ',
'\n 2014-12\n ', '\n 2015-12\n ', '\n
TTM\n '],
dtype='object')
In [99]: i = i.str.replace(r'[\n\s]+', '')
In [100]: i
Out[100]: Index(['', '2006-12', '2007-12', '2008-12', '2009-12', '2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12', 'TTM'], d
type='object')
来自@Joe Lin的更好解决方案:
In [103]: i.str.strip()
Out[103]: Index(['', '2006-12', '2007-12', '2008-12', '2009-12', '2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12', 'TTM'], d
type='object')